The Role of Electron–Phonon Interaction in Heavily Doped Fine‐Grained Bulk Silicons as Thermoelectric Materials

Advanced Electronic Materials - Tập 2 Số 8 - 2016
Tiejun Zhu1, Guanting Yu1, Jing Xu1, Haijun Wu2, Chenguang Fu1, Xiaohua Liu1, Jiaqing He2, Xinbing Zhao1
1State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
2Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China

Tóm tắt

High thermal conductivity of silicon limits its application prospect in thermoelectric technology for direct thermal to electrical energy conversion. Nanostructuring has been demonstrated to be an effective approach for significantly reducing lattice thermal conductivity of silicon and hence improving thermoelectric figure of merit zT due to the enhanced phonon scattering at boundaries. Here, it is shown that in fine‐grained (≈800 nm) heavily doped bulk silicon with optimized carrier concentration, electron–phonon scattering also plays an important role in the phonon transport in silicon above room temperature, and contributes with a ≈36% reduction in lattice thermal conductivity of heavily doped Si0.94P0.06 at room temperature. Benefiting from the sharp decline of the lattice thermal conductivity, the zT value of the samples increases by a factor of ≈3 compared with the single‐crystal silicon. The results can also be extended to other high efficiency thermoelectric materials with high optimal carrier concentration for understanding and optimizing phonon transport and thermoelectric performance.

Từ khóa


Tài liệu tham khảo

10.1126/science.283.5403.804

10.1038/nmat2090

10.1038/nature09996

10.1039/C4EE03042G

10.1126/science.1159725

10.1038/ncomms9144

10.1038/asiamat.2010.138

10.1038/nature11439

10.1039/C3EE43099E

10.1038/npjcompumats.2015.15

10.1126/science.1156446

10.1038/am.2013.86

10.1021/cm5041826

10.1039/C5MH00021A

10.1002/adfm.201400123

10.1002/aenm.201300174

10.1002/aenm.201400452

10.1126/science.272.5266.1325

10.1038/nmat3273

10.1002/adma.201400515

10.1016/0038-1101(68)90104-4

10.1063/1.348408

10.1063/1.349385

Rowe D. M., 1978, Journal, 125, 1113

10.1002/aenm.201500588

10.1002/aenm.201400600

10.1039/C4MH00142G

10.1002/adfm.201300663

10.1021/cm060261t

10.1063/1.3253100

10.7567/JJAP.54.071301

10.1002/adma.200600527

10.1002/adfm.201201576

10.1063/1.347717

10.1088/0022-3719/13/25/009

10.1088/0022-3719/13/25/010

10.1088/0022-3727/14/4/025

10.1038/nature06458

10.1038/nature06381

10.1002/adfm.200900250

10.1080/14786435608238092

10.1080/14786435708243818

Ziman J. M., 1960, Electrons and phonons

10.1103/PhysRevLett.114.115901

10.1038/am.2014.39

10.1038/ncomms5515

Masetti G., 1979, Journal, 3, 65

Vining C. B., 1995, CRC Handbook of Thermoelectrics

10.1103/PhysRev.120.1149

10.1209/0295-5075/104/46003

10.1103/PhysRev.136.A1149

10.1103/PhysRev.134.A1058

10.1103/PhysRevB.14.556

10.1103/PhysRevB.65.094115

10.1039/c1ee01406d

10.1080/14786440108561203

10.1103/PhysRevB.87.035437

10.1021/nl1045395

10.1007/BF02869224

10.1063/1.1713926