Big Data techniques to measure credit banking risk in home equity loans
Tài liệu tham khảo
Alaraj, 2016, A new hybrid ensemble credit scoring model based on classifiers consensus system approach, Expert Systems with Applications, 64, 36, 10.1016/j.eswa.2016.07.017
Altman, 1998, The important and subtlety of credit rating migration, Journal of Banking and Finance, 22, 1231, 10.1016/S0378-4266(98)00066-1
Baesens, 2003, Benchmarking state-of-the-art classification algorithms for credit scoring, Journal of the Operational Research Society, 54, 627, 10.1057/palgrave.jors.2601545
Bates, 2015
Bates, 2015
Boj, 2009, Criterios de selección de modelo en credit scoring, aplicación del análisis discriminante basado en distancias, En Anales del Instituto de Actuarios Españoles, 15, 833
Boj, 2009, Credit scoring basado en distancias: Coeficientes de influencia de los predictores, 15
Bonilla, 2003, Modelos paramétricos y no paramétricos en problemas de credit scoring, Revista Española de Financiación y Contabilidad, 32, 833, 10.1080/02102412.2003.10779502
Breiman, 1984
Canton, 2010, Un modelo de credit scoring para instituciones de microfinanzas en el marco de Basilea ii, Journal of Economics, Finance and Administrative Science, 15
Dobson, 1990
Durand, 1941
Escalona Cortés, 2011
Fisher, 1936, The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, 179, 10.1111/j.1469-1809.1936.tb02137.x
Galindo, 2000, Credit risk assessment using statistical and machine learning: Basic methodology and risk modeling applications, Computational Economics, 15, 107, 10.1023/A:1008699112516
Gutierrez, 2007, Modelos de credit scoring: Qué, cómo, cuándo y para qué, MPRA Paper, 16377, 1
Hand, 1997, Statistical classification methods in consumer credit scoring: A review, Royal Statistical Society, 160, 523, 10.1111/j.1467-985X.1997.00078.x
Huang, 2006, Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem, Nonlinear Analysis: Real World Applications, 7, 720, 10.1016/j.nonrwa.2005.04.006
Lee, 2006, Mining the customer credit using classification and regression tree and multivariate adaptive regression splines, Computational Statistics & Data Analysis, 50, 1113, 10.1016/j.csda.2004.11.006
Liu, 2007, Comparative assessment of the measures of thematic classification accuracy, Remote Sensing of Environment, 107, 606, 10.1016/j.rse.2006.10.010
Liu, 2005, Data mining feature selection for credit scoring models, Journal of the Operational Research Society, 56, 1099, 10.1057/palgrave.jors.2601976
Marks, 1974, Discriminant functions when covariance matrices are unequal, Journal of the American Statistical Association, 69, 555, 10.1080/01621459.1974.10482992
McCullagh, 1989
Meyer, 2014
Morales, 2013, Monte Carlo simulation study under regression models to estimate credit banking risk in home equity loan, Data Management and Security Applications in Medicine, Science and Engineering, 45, 141
Ochoa, 2010, Construcción de un modelo de scoring para el otorgamiento de crédito en una entidad financiera, Perfil de Coyuntura Económica, 16, 191
Pérez-Martín, 2017, Computational experiment to compare techniques in large data sets to measure credit banking risk in home equity loans, Data Management and Security Applications in Medicine, Science and Engineering, 5, 771
Piramuthu, 2006, On preprocessing data for financial credit risk evaluation, Expert Systems with Applications, 30, 489, 10.1016/j.eswa.2005.10.006
Quinlan, 1993
2015
Reichert, 1983, An examination of conceptual issues involved in developing credit-scoring models, Journal of Business and Economic Statistics, 1, 101
Ripley, 2015
Ripley, 1996
Seber, 1984, 10.1002/9780470316641
Srinivasan, 1987, Credit granting: A comparative analysis of classification procedures, Journal of Finance, 42, 665, 10.1111/j.1540-6261.1987.tb04576.x
Therneau, 2014
Thomas, 2000, A survey of credit and behavioral scoring: Forecasting financial risk of lending to consumers, International Journal of Forecasting, 16, 149, 10.1016/S0169-2070(00)00034-0
Trias, 2005, Riesgo de créditos: Conceptos para su medición, basilea ii, herramientas de apoyo a la gestión, AIS Group - Financial Decisions
Van Gestel, 2003, A support vector machine approach to credit scoring, Bank en Financiewezen, 2, 73
Venables, 2002
Yobas, 2000, Credit scoring using neural and evolutionary techniques, IMA Journal of Management Mathematics, 11, 111, 10.1093/imaman/11.2.111
Yu, 2014, Credit risk evaluation with a least squares fuzzy support vector machines classifier, Discrete Dynamics in Nature and Society, 2014, 1
Yu, 2011, Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection, Expert Systems with Applications, 38, 15392, 10.1016/j.eswa.2011.06.023