Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case

Springer Science and Business Media LLC - Tập 99 - Trang 113-130 - 2004
Mats G. Larson1, A. Jonas Niklasson2
1Department of Mathematics, Chalmers University of Technology, Göteborg, Sweden
2Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden

Tóm tắt

In this paper we analyze a family of discontinuous Galerkin methods, parameterized by two real parameters, for elliptic problems in one dimension. Our main results are: (1) a complete inf-sup stability analysis characterizing the parameter values yielding a stable scheme and energy norm error estimates as a direct consequence thereof, (2) an analysis of the error in L2 where the standard duality argument only works for special parameter values yielding a symmetric bilinear form and different orders of convergence are obtained for odd and even order polynomials in the nonsymmetric case. The analysis is consistent with numerical results and similar behavior is observed in two dimensions.

Tài liệu tham khảo

Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742 (1982) Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001) Babuška, I., Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for diffusion problems:1-D. Anal. Comput. Math. Appl. 37(9), 103–122 (1999) Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Berlin, Springer-Verlag, 1994 Cockburn, B., Karniadakis, K.E. Shu, C.-W.: Discontinuous Galerkin methods: theory computation and applications, volume 11 of Lecture Notes in Computational science and engineering, Springer Verlag, 2000. Papers from the 1st International Symposium held in Newport RI, May 24–26, 1999 Nitsche, J.: Über ein Variationzprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen. Abh. Math. Sem. Univ. Hamburg 36(9), (1971) Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998) Oden, J.T., Baumann, C.E.: A conservative DGM for convection-diffusion and Navier-Stokes problems. In: Discontinuous Galerkin methods (Newport RI 1999) volume 11 of Lect. Notes Comput. Sci. Eng. Springer, 2000 Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3(3–4), 337–360 (2000) Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001) (electronic) Süli, E., Schwab, Ch., Houston, P.: hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Discontinuous Galerkin methods (Newport RI 1999), volume 11 of Lect. Notes Comput. Sci. Eng. Springer, 2000, pp. 221–230 Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152 (1978)