Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin

Blood - Tập 106 - Trang 1092-1097 - 2005
Hal Drakesmith, Lisa M. Schimanski, Emma Ormerod, Alison T. Merryweather-Clarke, Vip Viprakasit, Jon P. Edwards, Emma Sweetland, Judy M. Bastin, Diana Cowley, Yingyong Chinthammitr, Kathryn J.H. Robson, Alain R.M. Townsend

Tóm tắt

Abstract

Ferroportin (FPN) mediates iron export from cells; FPN mutations are associated with the iron overloading disorder hemochromatosis. Previously, we found that the A77D, V162del, and G490D mutations inhibited FPN activity, but that other disease-associated FPN variants retained full iron export capability. The peptide hormone hepcidin inhibits FPN as part of a homeostatic negative feedback loop. We measured surface expression and function of wild-type FPN and fully active FPN mutants in the presence of hepcidin. We found that the Y64N and C326Y mutants of FPN are completely resistant to hepcidin inhibition and that N144D and N144H are partially resistant. Hemochromatosis-associated FPN mutations, therefore, either reduce iron export ability or produce an FPN variant that is insensitive to hepcidin. The former mutation type is associated with Kupffer-cell iron deposition and normal transferrin saturation in vivo, whereas patients with the latter category of FPN mutation have high transferrin saturation and tend to deposit iron throughout the liver parenchyma. FPN-linked hemochromatosis may have a variable pathogenesis depending on the causative FPN mutant.


Tài liệu tham khảo

Pietrangelo A. Hereditary hemochromatosis: a new look at an old disease. N Engl J Med. 2004;350: 2383-2397. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13: 399-408. Robson KJ, Merryweather-Clarke AT, Cadet E, et al. Recent advances in understanding haemochromatosis: a transition state. J Med Genet. 2004;41: 721-730. Njajou OT, Vaessen N, Joosse M, et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet. 2001;28: 213-214. Montosi G, Donovan A, Totaro A, et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest. 2001;108: 619-623. Devalia V, Carter K, Walker AP, et al. Autosomal dominant reticuloendothelial iron overload associated with a 3-base pair deletion in the ferroportin 1 gene (SLC11A3). Blood. 2002;100: 695-697. Roetto A, Merryweather-Clarke AT, Daraio F, et al. A valine deletion of ferroportin 1: a common mutation in hemochromastosis type 4. Blood. 2002;100: 733-734. Wallace DF, Pedersen P, Dixon JL, et al. Novel mutation in ferroportin1 is associated with autosomal dominant hemochromatosis. Blood. 2002;100: 692-694. Arden KE, Wallace DF, Dixon JL, et al. A novel mutation in ferroportin1 is associated with haemochromatosis in a Solomon Islands patient. Gut. 2003;52: 1215-1217. Barton JC, Acton RT, Rivers CA, et al. Genotypic and phenotypic heterogeneity of African Americans with primary iron overload. Blood Cells Mol Dis. 2003;31: 310-319. Gordeuk VR, Caleffi A, Corradini E, et al. Iron overload in Africans and African-Americans and a common mutation in the SCL40A1 (ferroportin 1) gene. Blood Cells Mol Dis. 2003;31: 299-304. Jouanolle AM, Douabin-Gicquel V, Halimi C, et al. Novel mutation in ferroportin 1 gene is associated with autosomal dominant iron overload. J Hepatol. 2003;39: 286-289. Rivard SR, Lanzara C, Grimard D, et al. Autosomal dominant reticuloendothelial iron overload (HFE type 4) due to a new missense mutation in the FERROPORTIN 1 gene (SLC11A3) in a large French-Canadian family. Haematologica. 2003;88: 824-826. Wallace DF, Clark RM, Harley HA, Subramaniam VN. Autosomal dominant iron overload due to a novel mutation of ferroportin1 associated with parenchymal iron loading and cirrhosis. J Hepatol. 2004;40: 710-713. Beutler E, Barton JC, Felitti VJ, et al. Ferroportin 1 (SCL40A1) variant associated with iron overload in African-Americans. Blood Cells Mol Dis. 2003;31: 305-309. Pietrangelo A, Montosi G, Totaro A, et al. Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. N Engl J Med. 1999;341: 725-732. Sham RL, Phatak PD, West C, Lee P, Andrews C, Beutler E. Autosomal dominant hereditary hemochromatosis associated with a novel ferroportin mutation and unique clinical features. Blood Cells Mol Dis. 2005;34: 157-161. Cazzola M, Cremonesi L, Papaioannou M, et al. Genetic hyperferritinaemia and reticuloendothelial iron overload associated with a three base pair deletion in the coding region of the ferroportin gene (SLC11A3). Br J Haematol. 2002;119: 539-546. Njajou OT, de Jong G, Berghuis B, et al. Dominant hemochromatosis due to N144H mutation of SLC11A3: clinical and biological characteristics. Blood Cells Mol Dis. 2002;29: 439-443. Njajou OT, Vaessen N, Oostra B, Heutink P, Van Duijn CM. The hemochromatosis N144H mutation of SLC11A3 gene in patients with type 2 diabetes. Mol Genet Metab. 2002;75: 290-291. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275: 19906-19912. Donovan A, Brownlie A, Zhou Y, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403: 776-781. McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5: 299-309. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306: 2051-2053. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci U S A. 2005;102: 1324-1328. Courselaud B, Pigeon C, Inoue Y, et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J Biol Chem. 2002;277: 41163-41170. Schimanski LM, Drakesmith H, Merryweather-Clarke AT, et al. In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations. Blood. 2005;105: 4096-4102. Drakesmith H, Sweetland E, Schimanski L, et al. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci U S A. 2002;99: 15602-15607. Epub 12002 Nov 15612. Townsend A, Drakesmith H. Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. 2002;359: 786-790. Davies PS, Enns CA. Expression of the hereditary hemochromatosis protein HFE increases ferritin levels by inhibiting iron export in HT29 cells. J Biol Chem. 2004;279: 25085-25092. Pietrangelo A. The ferroportin disease. Blood Cells Mol Dis. 2004;32: 131-138. Papanikolaou G, Tzilianos M, Christakis JI, et al. Hepcidin in iron overload disorders. Blood. 2005;105: 4103-4105.