De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants

Oxford University Press (OUP) - Tập 114 Số 4 - Trang 1161-1167 - 1997
Paul W. Paré1, James H. Tumlinson1
1Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, 1700 Southwest 23rd Drive, Gainesville, Florida 32608.

Tóm tắt

Abstract

In response to insect feeding on the leaves, cotton (Gossypium hirsutum L.) plants release elevated levels of volatiles, which can serve as a chemical signal that attracts natural enemies of the herbivore to the damaged plant. Pulse-labeling experiments with [13C]CO2 demonstrated that many of the volatiles released, including the acyclic terpenes (E,E)-α--farnesene, (E)-β-farnesene, (E)-β-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, and (E/E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, as well as the shikimate pathway product indole, are biosynthesized de novo following insect damage. However, other volatile constituents, including several cyclic terpenes, butyrates, and green leaf volatiles of the lipoxygenase pathway are released from storage or synthesized from stored intermediates. Analysis of volatiles from artificially damaged plants, with and without beet armyworm (Spodoptera exigua Hubner) oral secretions exogenously applied to the leaves, as well as volatiles from beet armyworm-damaged and -undamaged control plants, demonstrated that the application of caterpillar oral secretions increased both the production and release of several volatiles that are synthesized de novo in response to insect feeding. These results establish that the plant plays an active and dynamic role in mediating the interaction between herbivores and natural enemies of herbivores.

Từ khóa


Tài liệu tham khảo