A simple method to clean ligand contamination on TEM grids
Tài liệu tham khảo
Boles, 2016, The surface science of nanocrystals, Nat. Mater., 15, 141, 10.1038/nmat4526
Heuer-Jungemann, 2019, The role of ligands in the chemical synthesis and applications of inorganic nanoparticles, Chem. Rev., 119, 4819, 10.1021/acs.chemrev.8b00733
Horiuchi, 2009, Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers, ACS Nano, 3, 1297, 10.1021/nn9001598
Dyck, 2018, Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies, J. Vacuum Sci. Technol. B, Nanotechnol. Microelectron., 36
Huth, 2012, Focused electron beam induced deposition: a perspective, Beilstein J. Nanotechnol., 3, 597, 10.3762/bjnano.3.70
van Dorp, 2008, A critical literature review of focused electron beam induced deposition, J. Appl. Phys., 104, 081301, 10.1063/1.2977587
Mitchell, 2015, Contamination mitigation strategies for scanning transmission electron microscopy, Micron, 73, 36, 10.1016/j.micron.2015.03.013
McGilvery, 2012, Contamination of holey/lacey carbon films in STEM, Micron, 43, 450, 10.1016/j.micron.2011.10.026
Isabell, 2002, Plasma cleaning and its applications for electron microscopy, Microsc. Microanal., 5, 126, 10.1017/S1431927699000094
Griffiths, 2010, Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning, J. Phys., 241
Zaluzec, 1997, Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy
Egerton, 2004, Radiation damage in the TEM and SEM, Micron., 35, 399, 10.1016/j.micron.2004.02.003
Algara-Siller, 2014, Dry-cleaning of graphene, Appl. Phys. Lett., 104, 10.1063/1.4871997
Hren, 1986, Barriers to AEM: contamination and etching, 353
Soong, 2012, Contamination cleaning of TEM/SEM samples with the ZONE cleaner, Micros. Today, 20, 44, 10.1017/S1551929512000752
Hoyle, 2011, UV treatment of TEM/STEM samples for reduced hydrocarbon contamination, Microsc. Microanal., 17, 1026, 10.1017/S1431927611006003
Leuthner, 2019, Scanning transmission electron microscopy under controlled low-pressure atmospheres, Ultramicroscopy, 203, 76, 10.1016/j.ultramic.2019.02.002
Li, 2017, Understanding individual defects in CdTe thin-film solar cells via STEM: from atomic structure to electrical activity, Mater. Sci. Semicond. Process., 65, 64, 10.1016/j.mssp.2016.06.017
Li, 2016, Column-by-column observation of dislocation motion in CdTe: dynamic scanning transmission electron microscopy, Appl. Phys. Lett., 109
Osowiecki, 2018, Tailoring morphology of Cu–Ag nanocrescents and core–shell nanocrystals guided by a thermodynamic model, J. Am. Chem. Soc., 140, 8569, 10.1021/jacs.8b04558
Li, 2017, Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure, J. Am. Chem. Soc., 139, 4290, 10.1021/jacs.7b00261
Shen, 2017, Purification technologies for colloidal nanocrystals, Chem. Commun., 53, 827, 10.1039/C6CC07998A
Glaria, 2014, Deciphering ligands’ interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools, Chem. Eur. J., 21, 1169, 10.1002/chem.201403835
Pankhurst, 2020, Metal–ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2 reduction reaction, Chem. Sci., 11, 9296, 10.1039/D0SC03061A
Reichardt, 2004
González-Rubio, 2020, Micelle-directed chiral seeded growth on anisotropic gold nanocrystals, Science, 368, 1472, 10.1126/science.aba0980
Mulder, 2020, Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications, ACS Appl. Nano Mater., 3, 3859, 10.1021/acsanm.0c00583
Leemans, 2020, Near-edge ligand stripping and robust radiative exciton recombination in CdSe/CdS core/crown nanoplatelets, J. Phys. Chem. Lett., 11, 3339, 10.1021/acs.jpclett.0c00870
Akkerman, 2019, Ultrathin orthorhombic PbS nanosheets, Chem. Mater., 31, 8145, 10.1021/acs.chemmater.9b02914
Cambré, 2015, Chirality-dependent densities of carbon nanotubes by in situ 2D fluorescence-excitation and Raman characterisation in a density gradient after ultracentrifugation, Nanoscale, 7, 20015, 10.1039/C5NR06020F