Effect of supplemental blue light intensity on the growth and quality of Chinese kale

Yamin Li1, Yinjian Zheng1, Houcheng Liu1, Yiting Zhang1, Yanwei Hao1, Shiwei Song1, Bingfu Lei2
1College of Horticulture, South China Agricultural University, Guangzhou 510642, China
2College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Araceli C, Madelourdes PH, Maelena P, Joséa R, Carlosandrés G (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

Blakesley RW, Boezi JA (1977) A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue g250. Anal Biochem 82:580–582. https://doi.org/10.1016/0003-2697(77)90197-X

Bliznikas Z, Zukauskas A, Samuolienė G, Viršilė A, Brazaitytė A, Jankauskienė J, Duchovskis P, Novičkovas A (2012) Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Hortic 939:85–91. https://doi.org/10.17660/ActaHortic.2012.939.10

Block G, Jensen CD, Dalvi TB, Norkus EP, Hudes M, Crawford PB, Holland N, Fung EB, Schumacher L et al (2009) Vitamin c treatment reduces elevated C-reactive protein. Free Radic Biol Med 46:70–77. https://doi.org/10.1016/j.freeradbiomed.2008.09.030

Brazaitytė A, Sakalauskienė S, Samuolienė G, Jankauskienė J, Viršilė A, Novičkovas A, Sirtautas A, Miliauskienė J, Vaštakaitė V et al (2015) The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem 173:600–606. https://doi.org/10.1016/j.foodchem.2014.10.077

Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in brassica vegetables. Molecules 16:251–280. https://doi.org/10.3390/molecules16010251

Chan TYK (2011) Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicol Lett 200:107–108. https://doi.org/10.1016/j.toxlet.2010.11.002

Chang AC, Yang TY, Riskowski GL (2013) Ascorbic acid, nitrate, and nitrite concentration relationship to the 24hour light/dark cycle for spinach grown in different conditions. Food Chem 138:382–388. https://doi.org/10.1016/j.foodchem.2012.10.036

Christaki E, Bonos E, Giannenas I, Floroupaneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93:5–11. https://doi.org/10.1002/jsfa.5902

Deng B, Shang X, Fang S, Li Q, Fu X, Su J (2012) Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus. J Agric Food Chem 60:6286–6292. https://doi.org/10.1201/jf301525s

Fan XX, Xu ZG, Liu XY, Gao Y (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55. https://doi.org/10.1016/j.scienta.2013.01.017

Farrokh TP, Majd A, Mahmoodzadeh H, Nejad ST (2016) Effect of red and blue light-emitting diodes on germination, morphological and anatomical features of Brassica napus. Adv Stud Biol 8:173–180. https://doi.org/10.12988/asb.2016.6832

Fu WG, Li PP, Wu YY (2012a) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135:45–51. https://doi.org/10.1016/j.scienta.2011.12.004

Fu WG, Li PP, Wu YY, Tang JJ (2012b) Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce. Hortic Sci 39:129–134. https://doi.org/10.17221/192/2011-HORTSCI

Gratani L (1992) A non-destructive method to determine chlorophyll content of leaves. Photosynthetica 26:469–473

Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, Ieperen WV, Harbinson J (2010) Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117. https://doi.org/10.1093/jxb/erq132

Horrer D, Flütsch S, Pazmino D, Matthews JA, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D (2016) Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol Cb 26:362–370. https://doi.org/10.1016/j.cub.2015.12.036

Huché-Thélier L, Crespel L, Gourrierec JL, Morel P, Sakr S, Leduc N (2016) Light signaling and plant responses to blue and UV radiations—perspectives for applications in horticulture. Environ Exp Bot 121:22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009

Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Et Biophys Acta 1817:182–193. https://doi.org/10.1016/j.bbabio.2011.04.012

Kim SJ, Kawaharada C, Suzuki T, Saito K, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H (2006) Effect of natural light periods on rutin, free amino acid and vitamin c contents in the sprouts of common (Fagopyrum esculentum Moench) and tartary (F. tataricum Gaertn.) buckwheats. Food Sci Tech Int Tokyo 12:199–205. https://doi.org/10.3136/fstr.12.199

Kohyama K, Nishinari K (1991) Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J Agric Food Chem 39:1406–1410

Konczak I, Zhang W (2004) Anthocyanins-more than nature’s colours. J Biomed Biotech 5:239–240. https://doi.org/10.1155/S1110724304407013

Kopsell DA, Sams CE, Morrow RC (2016) Interaction of light quality and fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese kale. J Sci Food Agric 97:911. https://doi.org/10.1002/jsfa.7814

Kubota C, Chia P, Yang Z, Li Q (2012) Applications of far-red light emitting diodes in plant production under controlled environments. Acta Hortic 952:59–66. https://doi.org/10.17660/ActaHortic.2012.952.4

Kwack Y, Kim KK, Hwang H, Chun C (2015) Growth and quality of sprouts of six vegetables cultivated under different light intensity and quality. Hortic Environ Biotech 56:437–443. https://doi.org/10.1007/s13580-015-1044-7

Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243–2244

Li J (2000) Study on molybdenum blue method of L-VC test by spectrometry. Foodence 21:42–45

Li YL, Hou XL, Li ZQ, Bai HT, Shi L, Jiang CD (2011) Effects of light intensity on anthocyanins contents and photosynthetic characteristics in purple basil (Ocimum basilicum L.) leaves. Acta Agric Boreali-Sinica 26:231–238

Li H, Tang C, Xu Z, Liu X (2012) Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agric Sci 4:262–273. https://doi.org/10.5539/jas.v4n4p262

Lichtenthaler HK, Ac A, Marek MV, Kalina J, Urban O (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem 45:577–588. https://doi.org/10.1016/j.plaphy.2007.04.006

Liu XY, Guo SR, Xu ZG, Jiao XL, Takafumi T (2011) Regulation of chloroplast ultrastructure. Cross-section anatomy of leaves and morphology of stomata of cherry tomato by different light irradiations of LEDs. HortScience 46:217–221

Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M (2017) Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr Opin Plant Biol 37:49–55. https://doi.org/10.1016/j.pbi.2017.03.011

Ma G, Zhang L, Setiawan CK, Yamawaki K, Asai T, Nishikawa F, Maezawa S, Sato H, Kanemitsu N et al (2014) Effect of red and blue led light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biol Tech 94:97–103. https://doi.org/10.1016/j.postharvbio.2014.03.010

Mizuno T, Amaki W, Watanabe H (2011) Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Chem Phys Lett 508:248–251. https://doi.org/10.17660/ActaHortic.2011.907.25

Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 243:6281–6283

Muneer S, Kim EJ, Park JS, Lee JH (2014) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 15:4657–4670. https://doi.org/10.3390/ijms15034657

Nanya K, Ishigami Y, Hikosaka S, Goto E (2012) Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic 956:261–266. https://doi.org/10.17660/ActaHortic.2012.956.29

Novičkovas A, Brazaitytė A, Duchovskis P, Jankauskienė J, Samuoliene G, Viršilė A, Sirtautas R, Bliznikas Z, Arturas Z (2012) Solid-state lamps (LEDs) for the short-wavelength supplementary lighting in greenhouses: experimental results with cucumber. Acta Hortic 927:723–730. https://doi.org/10.17660/ActaHortic.2012.927.90

Olle M, ViršIle A (2013) The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric Food Sci 22:223–234

Pérez-Balibrea S, Moreno DA, García-Viguera C (2008) Influence of light on health-promoting phytochemicals of broccoli sprouts. J Sci Food Agric 88:904–910. https://doi.org/10.1002/jsfa.3169

Pirie A, Mullins MG (1976) Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol 58:468–472. https://doi.org/10.1104/pp.58.4.468

Potter TI, Rood SB, Zanewich KP (1999) Light intensity, gibberellin content and the resolution of shoot growth in brassica. Planta 207:505–511. https://doi.org/10.1007/s004250050510

Qian L, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64. https://doi.org/10.1016/j.envexpbot.2009.06.011

Qian H, Liu T, Deng M, Miao H, Cai C, Shen W, Wang Q (2015) Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem 196:1232–1238. https://doi.org/10.1016/j.foodchem.2015.10.055

Samuolienė G, Viršilė A, Brazaitytė A, Jankauskienė J, Sakalauskienė S, Vaštakaitė V, Novičkovas A, Viškelienė A, Sasnauskas A et al (2017) Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem 228:50–56. https://doi.org/10.1016/j.foodchem.2017.01.144

Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytolog 155(3):349–361. https://doi.org/10.1046/j.1469-8137.2002.00482.x

Stutte GW, Edney S, Skerritt T (2009) Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Hortsci Publ Am Soc Hortic Sci 44:79–82

Sun B, Liu N, Zhao Y, Yan H, Wang Q (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem 124:941–947. https://doi.org/10.1016/j.foodchem.2010.07.031

Thwe AA, Kim YB, Li X, Seo JM, Kim SJ, Suzuki T, Chung SO, Park SU (2014) Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts. J Agric Food Chem 62:4839–4845. https://doi.org/10.1021/jf501335q

Vaštakaitė V, Viršilė A, Brazaitytė A, Samuolienė G, Jankauskienė J, Sirtautas R, Novičkovas A, Dabašinskas L, Sakalauskienė S et al (2015) The effect of blue light dosage on growth and antioxidant properties of microgreens. Sodininkystė Ir Daržininkystė 34:25–35

Wang ZM, Song FF, Zhi-Gang XU, Liu XY, Yang Y (2011) Effect of red and blue led light intensity on growth and quality of lettuce. China Veg 16:44–49 (in Chinese)

Zhang L, Ma G, Yamawaki K, Ikoma Y, Matsumoto H, Yoshioka T, Ohta S, Kato M (2015) Regulation of ascorbic acid metabolism by blue led light irradiation in citrus juice sacs. Plant Sci 233:134–142. https://doi.org/10.1016/j.plantsci.2015.01.010