Evaluating combinations of diagnostic tests to discriminate different dementia types

Marie Bruun1, Hanneke F.M. Rhodius-Meester2, Juha Koikkalainen3, Marta Baroni4, Le Gjerum1, Afina W. Lemstra2, Frederik Barkhof5,6, Anne M. Remes7,8, Timo Urhemaa9, Antti Tolonen9, Daniel Rueckert10, Mark van Gils9, Kristian S. Frederiksen1, Gunhild Waldemar1, Philip Scheltens2, Patrizia Mecocci4, Hilkka Soininen11, Jyrki Lötjönen3, Steen G. Hasselbalch1, Wiesje M. van der Flier2,12
1Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
2Alzheimer Center, Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
3Combinostics Ltd., Tampere, Finland
4Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
5Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
6UCL Institutes of Neurology and Healthcare Engineering, London, United Kingdom
7Medical Research Center, Oulu University Hospital, Oulu, Finland
8Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
9VTT Technical Research Center of Finland Ltd, Tampere, Finland
10Department of Computing, Imperial College London, United Kingdom
11Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
12Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands

Tóm tắt

AbstractIntroductionWe studied, using a data‐driven approach, how different combinations of diagnostic tests contribute to the differential diagnosis of dementia.MethodsIn this multicenter study, we included 356 patients with Alzheimer's disease, 87 frontotemporal dementia, 61 dementia with Lewy bodies, 38 vascular dementia, and 302 controls. We used a classifier to assess accuracy for individual performance and combinations of cognitive tests, cerebrospinal fluid biomarkers, and automated magnetic resonance imaging features for pairwise differentiation between dementia types.ResultsCognitive tests had good performance in separating any type of dementia from controls. Cerebrospinal fluid optimally contributed to identifying Alzheimer's disease, whereas magnetic resonance imaging features aided in separating vascular dementia, dementia with Lewy bodies, and frontotemporal dementia. Combining diagnostic tests increased the accuracy, with balanced accuracies ranging from 78% to 97%.DiscussionDifferent diagnostic tests have their distinct roles in differential diagnostics of dementias. Our results indicate that combining different diagnostic tests may increase the accuracy further.

Tài liệu tham khảo

2017, World Health Organization. Global action plan on the public health response to dementia 2017‐2025, World Health Organization, 1 Lobo A., 2000, Prevalence of dementia and major subtypes in Europe: A collaborative study of population‐based cohorts. Neurologic Diseases in the Elderly Research Group, Neurology, 54, S4 10.1016/j.jalz.2011.03.005 10.1212/WNL.43.2.250 10.1093/brain/awr179 10.1212/WNL.0000000000004058 10.1017/S0033291714002153 10.1136/jnnp-2013-307483 10.1212/WNL.0b013e31823ed0f0 10.1016/j.jalz.2014.02.004 10.1093/brain/awn298 10.1007/s00330-011-2205-4 10.3389/fnagi.2017.00117 10.1016/j.neuroimage.2012.04.056 10.1016/j.neuroimage.2011.01.008 10.1109/TBME.2011.2170986 10.3233/JAD-132306 10.3233/JAD-170850 10.1016/j.jalz.2017.06.391 10.1212/WNL.0b013e31821103e6 10.1212/01.wnl.0000187889.17253.b1 10.1016/0022-3956(75)90026-6 Schmidt M., 1996, Rey auditory verbal learning test: A handbook 10.1212/WNL.39.9.1159 10.2466/pms.1958.8.3.271 10.1017/S1355617706060115 10.1016/j.nicl.2016.02.019 10.1016/j.neuroimage.2009.10.026 Bruun M Koikkalainen J Rhodius‐Meester HFM Baroni M Gjerum L van Gilsf M et al. Detecting frontotemporal dementia using a novel MRI imaging biomarker: The Anterior vs. Posterior Index. Paper presented at: Alzheimer's Association International Conference 2018; July 22‐26 2018; Chicago IL USA. 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2011.03.029 10.1016/j.neuroimage.2013.02.069 10.3233/JAD-2011-110365 10.1016/j.neuroimage.2004.06.018 10.1002/sim.4780111005 Cluitmans L., 2013, A MATLAB toolbox for classification and visualization of heterogenous multi‐scale human data using the Disease State Fingerprint method, Stud Health Technol Inform, 189, 77 10.3389/fnagi.2018.00111 10.1016/j.psc.2015.01.003 10.1016/j.jalz.2017.03.002 10.3233/JAD-150548 Munoz‐Ruiz M.A., 2013, Disease state fingerprint in frontotemporal degeneration with reference to Alzheimer's disease and mild cognitive impairment, J Alzheimers Dis, 35, 727, 10.3233/JAD-122260 10.1007/s00401-012-0983-7 10.1371/journal.pone.0052531 10.1016/j.nicl.2015.08.022 10.1016/j.nicl.2017.05.018 10.1371/journal.pone.0025446 10.1016/j.neurobiolaging.2006.11.018 10.1046/j.1532-5415.2002.50367.x 10.3233/JAD-140942 10.1212/WNL.58.6.989 10.1097/00002093-199307030-00004