Incidence of healthcare-associated infections in a tertiary hospital in Beijing, China: results from a real-time surveillance system
Tóm tắt
To quantify the five year incidence trend of all healthcare-associated infections (HAI) using a real-time HAI electronic surveillance system in a tertiary hospital in Beijing, China. The real-time surveillance system scans the hospital’s electronic databases related to HAI (e.g. microbiological reports and antibiotics administration) to identify HAI cases. We conducted retrospective secondary analyses of the data exported from the surveillance system for inpatients with all types of HAIs from January 1st 2013 to December 31st 2017. Incidence of HAI is defined as the number of HAIs per 1000 patient-days. We modeled the incidence data using negative binomial regression. In total, 23361 HAI cases were identified from 633990 patients, spanning 6242375 patient-days during the 5-year period. Overall, the adjusted five-year HAI incidence rate had a marginal reduction from 2013 (4.10 per 1000 patient days) to 2017 (3.62 per 1000 patient days). The incidence of respiratory tract infection decreased significantly. However, the incidence rate of bloodstream infections and surgical site infection increased significantly. Respiratory tract infection (43.80%) accounted for the most substantial proportion of HAIs, followed by bloodstream infections (15.74%), and urinary tract infection (12.69%). A summer peak in HAIs was detected among adult and elderly patients. This study shows how continuous electronic incidence surveillance based on existing hospital electronic databases can provide a practical means of measuring hospital-wide HAI incidence. The estimated incidence trends demonstrate the necessity for improved infection control measures related to bloodstream infections, ventilator-associated pneumonia, non-intensive care patients, and non-device-associated HAIs, especially during summer months.
Tài liệu tham khảo
Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.
Haley RW, Culver DH, White JW, Morgan MW, Emori GT, Munn VP, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in us hospitals. Am J Epidemiol. 1985;121(2):182–205.
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–208.
Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care–associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732–44.
Cai Y, Venkatachalam I, Tee NW, Tan TY, Kurup A, Wong SY, et al. Prevalence of healthcare-associated infections and antimicrobial use among adult inpatients in Singapore acute-care hospitals: results from the first national point prevalence survey. Clin Infect Dis. 2017;64(suppl 2):61–7.
Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance. 2018;23(46).
Magill SS, Li Q, Gross C, Dudeck M, Allen-Bridson K, Edwards JR. Incidence and characteristics of ventilator-associated events reported to the National Healthcare Safety Network in 2014. Crit Care Med. 2016;44(12):2154.
Schröder C, Schwab F, Behnke M, Breier A-C, Maechler F, Piening B, et al. Epidemiology of healthcare associated infections in Germany: nearly 20 years of surveillance. Int J Med Microbiol. 2015;305(7):799–806.
Tao L, Hu B, Rosenthal VD, Gao X, He L. Device-associated infection rates in 398 intensive care units in Shanghai, China: international nosocomial infection control consortium (INICC) findings. Int J Infect Dis. 2011;15(11):e774–e80.
Freeman R, Moore LSP, García Álvarez L, Charlett A, Holmes A. Advances in electronic surveillance for healthcare-associated infections in the 21st century: a systematic review. J Hosp Infect. 2013;84(2):106–19.
Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin Infect Dis. 2013;58(5):688–96.
Puhto T, Syrjälä H. Incidence of healthcare-associated infections in a tertiary care hospital: results from a three-year period of electronic surveillance. J Hosp Infect. 2015;90(1):46–51.
Xing Y, Suo J, Du M, Xue W, Liu Y, Shi H, et al. Development and application of real-time surveillance system for nosocomial infection (in Chinese). Chin J Nosocomiol. 2011;21(24):5241–3.
Perencevich EN, McGregor JC, Shardell M, Furuno JP, Harris AD, Morris JG, et al. Summer peaks in the incidences of gram-negative bacterial infection among hospitalized patients. Infect Control Hosp Epidemiol. 2008;29(12):1124–31.
Shah PS, Yoon W, Kalapesi Z, Bassil K, Dunn M, Lee SK. Seasonal variations in healthcare-associated infection in neonates in Canada. Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F65–F9.
Richet H. Seasonality in gram-negative and healthcare-associated infections. Clin Microbiol Infect. 2012;18(10):934–40.
Chen Y, Xu X, Liang J, Lin H. Relationship between climate conditions and nosocomial infection rates. Afr Health Sci. 2013;13(2):339–43.
Du M, Xing Y, Suo J, Liu B, Jia N, Huo R, et al. Real-time automatic hospital-wide surveillance of nosocomial infections and outbreaks in a large Chinese tertiary hospital. BMC Med Inform Decis Mak. 2014;14(1):9.
National Health Commission. Diagnostic criteria for nosocomial infection (in Chinese). Chin Med J. 2001;81:314–20.
Center for Disease Control and Prevention. National Healthcare Safety Network (NHSN) Patient Safety Component Manual. 2019. Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf. Accessed 30 June 2019.
Garner J, Jarvis W, Emori T, Horan T, Hughes J. CDC definitions for nosocomial infections Am J Infect Control 1988;16(3):128–140.
Center for Disease Control and Prevention. CDC/NHSN Surveillance Definitions for Specific Types of Infections. 2019. Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf. Accessed 15 Mar 2019.
Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.
Wang J, Liu F, Tartari E, Huang J, Harbarth S, Pittet D, et al. The prevalence of healthcare-associated infections in mainland China: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(06):701–9.
Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep. 2007;122(2):160–6.
Kanamori H, Weber DJ, DiBiase LM, Sickbert-Bennett EE, Brooks R, Teal L, et al. Longitudinal trends in all healthcare-associated infections through comprehensive hospital-wide surveillance and infection control measures over the past 12 years: substantial burden of healthcare-associated infections outside of intensive care units and “other” types of infection. Infect Control Hosp Epidemiol. 2015;36(10):1139–47.
Moses MW, Pedroza P, Baral R, Bloom S, Brown J, Chapin A, et al. Funding and services needed to achieve universal health coverage: applications of global, regional, and national estimates of utilisation of outpatient visits and inpatient admissions from 1990 to 2016, and unit costs from 1995 to 2016. Lancet Public Health. 2019;4(1):e49–73.
Organization for Economic Co-operation and Development. Health at a Glance 2017: OECD Indicators 2017. Available at: https://read.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2017_health_glance-2017-en#page1. Accessed 15 Mar 2019.
National Health Commission. China Health And Family Planning Statistical Yearbook 2016. Beijing: Peking Union Medical College; 2016.
DiBiase LM, Weber DJ, Sickbert-Bennett EE, Anderson DJ, Rutala WA. The growing importance of non-device-associated healthcare-associated infections: a relative proportion and incidence study at an academic medical center, 2008-2012. Infect Control Hosp Epidemiol. 2014;35(2):200–2.
Weber DJ, Sickbert-Bennett EE, Brown V, Rutala WA. Completeness of surveillance data reported by the National Healthcare Safety Network: an analysis of healthcare-associated infections ascertained in a tertiary care hospital, 2010. Infect Control Hosp Epidemiol. 2012;33(1):94–6.
Schwab F, Gastmeier P, Meyer E. The warmer the weather, the more gram-negative bacteria-impact of temperature on clinical isolates in intensive care units. PLoS One. 2014;9(3):e91105.
Al-Hasan M, Lahr B, Eckel-Passow J, Baddour L. Seasonal variation in Escherichia coli bloodstream infection: a population-based study. Clin Microbiol Infect. 2009;15(10):947–50.
Young JQ, Ranji SR, Wachter RM, Lee CM, Niehaus B, Auerbach AD. “July effect”: impact of the academic year-end changeover on patient outcomes: a systematic review. Ann Intern Med. 2011;155(5):309–15.
Mäkinen TM, Juvonen R, Jokelainen J, Harju TH, Peitso A, Bloigu A, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir Med. 2009;103(3):456–62.
Du M, Li M, Liu K, Suo J, Xing Y, Liu B, et al. A real-time surgical site infections surveillance mode to monitor surgery classification−specific, hospital-wide surgical site infections in a Chinese tertiary hospital. Am J Infect Control. 2017;45(4):430–2.
Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the National Healthcare Safely Network. Infect Control Hosp Epidemiol. 2011;32(10):970–86.
McCabe WR, Jackson GG. Gram-negative bacteremia: I etiology and ecology. Arch Intern Med. 1962;110(6):847–55.