Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te)

Scientific Reports - Tập 9 Số 1
Muhammad Zulfiqar1, Yinchang Zhao2, Geng Li1, ZhengCao Li3, Jun Ni4
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, People’s Republic of China
2Department of Physics, Yantai University, Yantai 264005, People's Republic of China
3Department of Material Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
4Collaborative Innovation Center of Quantum Matter, Beijing 100084, People׳s Republic of China

Tóm tắt

AbstractThe successful synthesis of the single to few layer transition metal dichalcogenides has opened a new era in the nanoelectronics. For their efficient implementations in the electronic devices while taking care of their overheating issues, the characterization of their thermal transport properties is extremely vital. So, we have systematically investigated the thermal transport properties of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) by combining the first-principles calculations with Boltzmann transport equation. We find that monolayer WTe2 possesses the lowest lattice thermal conductivity κL (33:66 Wm−1K−1 at 300 K) among these six semiconducting materials, in contrast to the highest κL (113:97 Wm−1K−1 at 300 K) of WS2 among them. Further analyses reveal that the higher (lower) anharmonic and isotopic scatterings together with the lower (higher) phonon group velocities lead to the lowest (highest) value of κL in WTe2 (WS2) monolayer. In addition, we have also calculated the cumulative thermal conductivity κC as a function of mean free path, which indicates that the nanostructures with the length of about 400 nm would reduce κL drastically. These results offer important understanding from thermal conductivity point of view to design the 2D transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) electronics.

Từ khóa


Tài liệu tham khảo

Castro, N. A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys., 20 81, 109–162.

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

Jiadan, L. et al. Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Appl. Phys. Lett. 103, 063109 (2013).

Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).

Sahin, H. et al. Anomalous Raman spectra and thickness-dependent electronic properties of Wse2. Phys. Rev. B. 87, 165409 (2013).

Horzum, S. et al. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Phys. Rev. B. 87, 125415 (2013).

Klinovaja, J. & Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B. 88, 075404 (2013).

Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

Gu, X. K. & Yang, R. G. Phonon transport in single-layer transition metal dichalcogenides: A first-principles study. Appl. Phys. Lett. 105, 131903 (2014).

Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014).

Peimyoo, N. et al. Thermal conductivity determination of suspended mono-and bilayer WS2 by Raman spectroscopy. Nano Research 8, 1210–1221 (2015).

Cai, Y.-Q., Lan, J.-H., Gang, Z. & Yong-Wei, Z. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B. 89, 035438 (2014).

Cai, Y.-Q., Hangbo, Z., Gang, Z. & Yong-Wei, Z. Modulating carrier density and transport properties of MoS2 by organic molecular doping and defect engineering. Chem. Mater. 28, 8611–8621 (2016).

Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).

Lindsay, L., Broido, D. A. & Reinecke, T. L. First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? Phys. Rev. Lett. 111, 025901 (2013).

Jain, A. & McGaughey, A. J. H. Thermal conductivity of compound semiconductors: Interplay of mass density and acoustic-optical phonon frequency gap. J. Appl. Phys. 116, 073503 (2014).

Michel, K. H., Costamagna, S. & Peeters, F. M. Theory of anharmonic phonons in two-dimensional crystals. Phys. Rev. B. 91, 134302 (2015).

Huang, L.-F. & Zeng, Z. Roles of Mass, Structure, and Bond Strength in the Phonon Properties and Lattice Anharmonicity of Single-Layer Mo and W Dichalcogenides. J. Phys. Chem. C. 119, 18779–18789 (2015).

Boukhicha, M., Calandra, M., Measson, M.-A., Lancry, O. & Shukla, A. Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes. Phys. Rev. B. 87, 195316 (2013).

Da Silva, A. L. C., Cândido, L., Rabelo, J. N. T., Hai, G.-Q. & Peeters, F. M. Anharmonic effects on thermodynamic properties of a graphene monolayer. Euro. Phys. Lett. 107, 56004 (2014).

Muratore, C. et al. Cross-plane thermal properties of transition metal dichalcogenides. Appl. Phys. Lett. 102, 081604 (2013).

Huang, W., Da, H.-X. & Liang, G.-C. Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. J. Appl. Phys. 113, 104304 (2013).

Lee, C.-H. et al. Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H-MQ2 (M = Mo, W; Q = S, Se, Te) by layer mixing: Density functional investigation. Chem. Mater. 25, 3745–3752 (2013).

Huang, W., Luo, X., Gan, C. K., Quek, S. Y. & Liang, G.-C. Theoretical study of thermoelectric properties of few-layer MoS2 and Wse2. Phys. Chem. Chem. Phys. 16, 10866–10874 (2014).

Sahoo, S. P. et al. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C. 117, 9042–9047 (2013).

Yinchang, Z. et al. Intrinsic electronic transport and thermoelectric power factor in n-type doped monolayer MoS2. New J. Phys. 20, 043009 (2018).

Li, W., Carrete, J. & Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett 103, 253103 (2013).

Jiang, J.-W., Park, H. S. & Rabczuk, T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114, 064307 (2013).

Jo, I. S., Pettes, M. T., Ou, E., Wu, W. & Shi, L. Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett 104, 201902 (2014).

Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

Li, W., Lindsay, L., Broido, D. A., Stewart, D. A. & Mingo, N. Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B. 86, 174307 (2012).

Li, W. et al. Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B. 85, 195436 (2012).

Togo, A., Oba, F. Y. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B. 78, 134106 (2008).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1950).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Kumar, S. & Schwingenschlogl, U. Thermoelectric response of bulk and monolayer MoSe2 and Wse2. Chem. Mater. 27, 1278–1284 (2015).

Ding, Y.-C., Chen, M. & Xiao, B. Anisotropy in lattice thermal conductivity tensor of bulk hexagonal-MT2 (M = W, Mo and T = S and Se) by first principles phonon calculations. RSC Adv. 6, 7817–7828 (2016).

Ma, J.-L., Chen, Y., Han, Z. & Li, W. Strong anisotropic thermal conductivity of monolayer Wte2. 2D Mater. 3, 045010 (2016).

Tian, Z.-T. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B. 85, 184303 (2012).

El-Sharkawy, A. A. et al. Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K. Int. J. Thermophys. 4, 261–269 (1983).

Jain, A. & McGaughey, A. J.-H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015).

Gu, X. K. & Yang, R. G. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. J. Appl. Phys. 117, 025102 (2015).

Li, W. & Mingo, N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B. 91, 144304 (2015).

Li, W. & Mingo, N. Thermal conductivity of fully filled skutterudites: Role of the filler. Phys. Rev. B. 89, 184304 (2014).

Ziman, J. M. Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press (1960).