Effects of incubation temperature on the embryonic viability and hatching time in Russian sturgeon (Acipenser gueldenstaedtii)
Tóm tắt
Russian sturgeon (Acipenser gueldenstaedtii) is an emerging candidate species in the Korean aquaculture domain owing to its highly valued caviar. Although the embryonic development of this species was previously described, the complete image data on the morphological differentiation of developing embryos have not been yet fully available. Further, with the viewpoint of larval production in hatchery, the effects of temperature on embryonic viability and the temporal window of hatching event have not been extensively studied. Hence, the objective of this study was to provide a complete set of photographic image data on the embryogenesis and also to examine the effects of incubation temperatures on embryonic viability and hatching event in farm-bred Russian sturgeon. Typical characteristics of embryonic development including uneven, holoblastic cleavages with unequal blastomeres, followed by the formation of germ layer, neurulation, and organogenesis until hatching, were documented. Under different temperature conditions (12, 16, or 20 °C), viability of embryos incubated at 12 °C was significantly lower as relative to those of 16 and 20 °C incubated embryos. Hatchability of embryos was higher, and the timing of hatching event was more synchronized at 20 °C than at 12 and 16 °C. Data from this study suggest that the incubation of Russian sturgeon embryos at 20 °C would be desirable in the hatchery practice with respect to the good hatchability of embryos and the synchronization of hatching events. Additionally, the updated image data for complete embryonic development could be a useful reference guide for not only developmental researches but also artificial propagation of Russian sturgeon in farms.
Tài liệu tham khảo
Babaei SS, Kenari AA, Nazari R, Gisbert E. Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture. 2011;318:138–44.
Bolker JA. The mechanism of gastrulation in the white sturgeon. J Exp Zool. 1993;266:132–45.
Chebanov MS, Galich EV. Sturgeon hatchery manual. FAO Fisheries and Aquaculture Technical Paper. No. 558. Ankara: FAO; 2011.
Colombo RE, Garvey JE, Wills PS. A guide to the embryonic development of the shovelnose sturgeon (Scaphirhynchus platorynchus), reared at a constant temperature. J Appl Ichthyol. 2007;23:402–10.
Dettlaff TA, Ginsburg AS, Schmalhausen OI. Sturgeon fishes: developmental biology and aquaculture. New York: Springer-Verlag; 1993.
Dettlaff TA, Vassetzky SG. Animal species for developmental studies: Vol. 2, Vertebrates. New York: Plenum Publishing; 1991.
Gisbert E, Sarasquete MC, Williot P, Castelló-Orvay F. Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny. J Fish Biol. 1999;55:596–616.
Gisbert E, Williot P. Larval behavior and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baerii) larvae under small scale hatchery production. Aquaculture. 1997;156:63–76.
Güralp H, Pocherniaieva K, Blecha M, Policar T, Pšenička M, Saito T. Early embryonic development in pikeperch (Sander lucioperca) related to micromanipulation. Czech J Anim Sci. 2016;61:273–80.
Güralp H, Pocherniaieva K, Blecha M, Policar T, Pšenička M, Saito T. Development, and effect of water temperature on development rate, of pikeperch Sander lucioperca embryos. Theriogenology. 2017;104:94–104.
Kawaguchi M, Hiroi J, Miya M, Nishida M, Iuchi I, Yasumasu S. Intron-loss evolution of hatching enzyme genes in Teleostei. BMC Evol Biol. 2010;10:e260.
Kim KY, Lee SY, Song HY, Park CH, Nam YK. Complete mitogenome of the Russian sturgeon Acipenser gueldenstaedtii (Acipenseriformes; Acipenseridae). J Fish Sci Technol. 2009;12:35–43.
Krayushkina LS, Gerasimov AA, Kirsanov AA, Mosyagina MV, Ogorzałek A. Structure of pronephros and development of mesonephric kidney in larvae of Russian sturgeon, Acipenser gueldenstaedtii Brandt (Acipenseridae). Zool Pol. 2012;57:5–20.
Lowery LA, Sive H. Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev. 2004;121:1189–97.
Nagasawa T, Kawaguchi M, Sano K, Yasumasu S. Sturgeon hatching enzyme and the mechanism of egg envelope digestion: insight into changes in the mechanism of egg envelope digestion during the evolution of ray-finned fish. J Exp Zool B Mol Dev Evol. 2015;324:720–32.
Nagasawa T, Kawaguchi M, Yano T, Sano M, Okabe M, Yasumasu S. Evolutionary changes in the developmental origin of hatching gland cells in basal ray-finned fishes. Zool Sci. 2016;33:272–81.
Nam YK, Choi GC, Kim DS. An efficient method for blocking the 1st mitotic cleavage of fish zygote using combined thermal treatment, exemplified by mud loach (Misgurnus mizolepis). Theriogenology. 2004;61:933–45.
Ostos-Carrido MV, Llorente JI, Camacho S, García-Gallergo M, Sanz A, Domezain Z, Carmona R. Histological, histochemical and ultrastructural changes in the digestive tract of sturgeon Acipenser naccarii during early ontogeny. In: Carmona R, Domezain A, García-Gallego M, Hernando JA, Rodríguez F, Ruiz-Rejón M, editors. Biology, conservation and sustainable development of sturgeons. Dordrecht: Springer; 2009. p. 121–36.
Park CH. Artificial seedling propagation and caviar production in farmed Siberian sturgeon (Acipenser baerii) and Russian sturgeon (A. gueldenstaedtii). PhD. Thesis. Busan: Pukyong National University; 2018.
Park CH, Chapman FA. An extender solution for the short-term storage of sturgeon semen. N Am J Aquac. 2005;67:52–7.
Park CH, Lee SY, Kim DS, Nam YK. Effects of incubation temperature on egg development, hatching and pigment plug evacuation in farmed Siberian sturgeon Acipenser baerii. Fish Aquat Sci. 2013a;16:25–34.
Park CH, Lee SY, Kim DS, Nam YK. Embryonic development of Siberian sturgeon Acipenser baerii under hatchery conditions: an image guide with embryological descriptions. Fish Aquat Sci. 2013b;16:15–23.
Pype C, Verbueken E, Saad MA, Casteleyn CR, Van Ginneken CJ, Knapen D, Van Cruchten SJ. Incubation at 32.5 °C and above causes malformations in the zebrafish embryo. Reprod Toxicol. 2015;56:56–63.
Shi ZP, Fan TJ, Cong RS, Wang XF, Sun WJ, Yang LL. Purification and characterization of hatching enzyme from flounder Paralichthys olivaceus. Fish Physiol Biochem. 2006;32:35–42.
Shook DR, Keller R. Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. J Exp Zool B Mol Dev Evol. 2008;310:85–110.
Vijayraghavan DS, Davidson LA. Mechanics of neurulation: from classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res. 2017;109:153–68.
Wang YL, Binkowski FP, Doroshov SI. Effect of temperature on early development of white and lake sturgeon, Acipenser transmontanus and A. fulvescens. Environ Biol Fish. 1985;14:43–50.
Wrobel KH. The genus Acipenser as a model for vertebrate urogenital development: the müllerian duct. Anat Embryol. 2003;206:255–71.
Zeiske E, Kasumyan A, Bartsch P, Hansen A. Early development of the olfactory organ in sturgeons of the genus Acipenser: a comparative and electron microscopic study. Anat Embryol. 2003;206:357–72.