Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi

Genome Biology - Tập 12 - Trang 1-16 - 2011
Anke Burmester1,2, Ekaterina Shelest3, Gernot Glöckner4, Christoph Heddergott1,2, Susann Schindler5,6, Peter Staib7, Andrew Heidel4, Marius Felder4,8, Andreas Petzold4, Karol Szafranski4, Marc Feuermann9, Ivo Pedruzzi9, Steffen Priebe3, Marco Groth4, Robert Winkler6,10, Wenjun Li11, Olaf Kniemeyer1, Volker Schroeckh1, Christian Hertweck6,10, Bernhard Hube6,12, Theodore C White13, Matthias Platzer4, Reinhard Guthke3, Joseph Heitman11, Johannes Wöstemeyer2, Peter F Zipfel5,6, Michel Monod14, Axel A Brakhage1,2
1Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
2Institute of Microbiology, Friedrich Schiller University (FSU) Jena, Jena, Germany
3Systems Biology/Bioinformatics group, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
4Genome Analysis group, Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
5Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
6Friedrich Schiller University (FSU) Jena, Jena, Germany
7Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
8Biocomputing group, Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
9Swiss-Prot group, SIB, Swiss Institute of Bioinformatics, Geneve, Switzerland
10Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
11Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
12Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
13Seattle Biomedical Research Institute, University of Washington, Seattle, USA
14Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Tóm tắt

Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens.

Tài liệu tham khảo

Weitzman I, Summerbell RC: The dermatophytes. Clin Microbiol Rev. 1995, 8: 240-259. Monod M: Secreted proteases from dermatophytes. Mycopathologia. 2008, 166: 285-294. 10.1007/s11046-008-9105-4. White TC, Oliver BG, Gräser Y, Henn MR: Generating and testing molecular hypotheses in the dermatophytes. Eukaryot Cell. 2008, 7: 1238-1245. 10.1128/EC.00100-08. Giddey K, Monod M, Barblan J, Potts A, Waridel P, Zaugg C, Quadroni M: Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res. 2007, 6: 3081-3092. 10.1021/pr070153m. Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J, Chen L, Peng J, Ma L, Dong J, Xu X, Xue Y, Zhu Y, Zhang W, Yang L, Li W, Sun L, Wan Z, Ding G, Yu F, Tu K, Qian Z, Li R, Shen Y, Li Y, Jin Q: The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics. 2007, 8: 100-10.1186/1471-2164-8-100. Zaugg C, Monod M, Weber J, Harshman K, Pradervand S, Thomas J, Bueno M, Giddey K, Staib P: Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell. 2009, 8: 241-250. 10.1128/EC.00208-08. Zhang W, Yu L, Yang J, Wang L, Peng J, Jin Q: Transcriptional profiles of response to terbinafine in Trichophyton rubrum. Appl Microbiol Biotechnol. 2009, 82: 1123-1130. 10.1007/s00253-009-1908-9. Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, Pradervand S, Harshman K, Monod M: Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology. 2010, 156: 884-895. 10.1099/mic.0.033464-0. Yamada T, Makimura K, Abe S: Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol. 2006, 44: 243-252. 10.1080/13693780500410909. Fachin AL, Ferreira-Nozawa MS, Maccheroni W, Martinez-Rossi NM: Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006, 55: 1093-1099. 10.1099/jmm.0.46522-0. Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM: The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006, 44: 641-645. 10.1080/13693780600876553. Chermette R, Ferreiro L, Guillot J: Dermatophytoses in animals. Mycopathologia. 2008, 166: 385-405. 10.1007/s11046-008-9102-7. Drouot S, Mignon B, Fratti M, Roosje P, Monod M: Pets as the main source of two zoonotic species of the Trichophyton mentagrophytes complex in Switzerland, Arthroderma vanbreuseghemii and Arthroderma benhamiae.. Vet Dermatol. 2009, 20: 13-18. 10.1111/j.1365-3164.2008.00691.x. Kane J, Smitka C: Early detection and identification of Trichophyton verrucosum. J Clin Microbiol. 1978, 8: 740-747. Fumeaux J, Mock M, Ninet B, Jan I, Bontems O, Léchenne B, Lew D, Panizzon RG, Jousson O, Monod M: First report of Arthroderma benhamiae in Switzerland. Dermatology. 2004, 208: 244-250. 10.1159/000077311. Takahashi Y, Sano A, Takizawa K, Fukushima K, Miyaji M, Nishimura K: The epidemiology and mating behaviour of Arthroderma benhamiae var. erinacei in household four-toed hedgehogs (Atelerix albiventris) in Japan. Nippon Ishinkin Gakkai Zasshi. 2003, 44: 31-38. 10.3314/jjmm.44.31. Grunewald S, Paasch U, Gräser Y, Glander HJ, Simon JC, Nenoff P: Scarring tinea profunda in the pubic area due to Trichophyton verrucosum.. Hautarzt. 2006, 57: 811-813. 10.1007/s00105-005-1066-7. Broad Institute database: Dermatophyte Comparative Database. [http://www.broadinstitute.org/annotation/genome/dermatophyte_comparative/MultiHome.html] Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y, Hanazawa R, Uchida K, Saito H, Yamaguchi H: Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol. 1999, 37: 920-924. Summerbell RC, Haugland RA, Li A, Gupta AK: rRNA gene internal transcribed spacer 1 and 2 sequences of asexual, anthropophilic dermatophytes related to Trichophyton rubrum. J Clin Microbiol. 1999, 37: 4005-4011. Gräser Y, El Fari M, Vilgalys R, Kuijpers AF, De Hoog GS, Presber W, Tietz H: Phylogeny and taxonomy of the family Arthrodermataceae (dermatophytes) using sequence analysis of the ribosomal ITS region. Med Mycol. 1999, 37: 105-114. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol. 2004, 5: R12-10.1186/gb-2004-5-2-r12. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, Kronstad JW, Deangelis YM, Reeder NL, Johnstone KR, Leland M, Fieno AM, Begley WM, Sun Y, Lacey MP, Chaudhary T, Keough T, Chu L, Sears R, Yuan B, Dawson TL: Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA. 2007, 104: 18730-18735. 10.1073/pnas.0706756104. Rawlings ND, Barrett AJ, Bateman A: MEROPS: the peptidase database. Nucleic Acids Res. 2010, 38: D227-D233. 10.1093/nar/gkp971. Giddey K, Favre B, Quadroni M, Monod M: Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett. 2007, 267: 95-101. 10.1111/j.1574-6968.2006.00541.x. Zaugg C, Jousson O, Léchenne B, Staib P, Monod M: Trichophyton rubrum secreted and membrane-associated carboxypeptidases. Int J Med Microbiol. 2008, 298: 669-682. 10.1016/j.ijmm.2007.11.005. Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY, McMahan C, Muszewska A, Grynberg M, Mandel MA, Kellner EM, Barker BM, Galgiani JN, Orbach MJ, Kirkland TN, Cole GT, Henn MR, Birren BW, Taylor JW: Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009, 19: 1722-1731. 10.1101/gr.087551.108. Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, Maréchal F, Galleni M, Mignon B: Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol. 2010, 162: 990-997. 10.1111/j.1365-2133.2009.09608.x. Segers R, Butt TM, Carder JH, Keen JN, Kerry BR, Peberdy JF: The subtilisins of fungal pathogens of insects, nematodes and plants: Distribution and variation. Mycol Res. 1999, 103: 395-402. 10.1017/S0953756298007345. Henderson IR, Nataro JP: Virulence functions of autotransporter proteins. Infect Immun. 2001, 69: 1231-1243. 10.1128/IAI.69.3.1231-1243.2001. da Silva BA, dos Santos ALS, Barreto-Bergter E, Pinto MR: Extracellular peptidase in the fungal pathogen Pseudallescheria boydii. Curr Microbiol. 2006, 53: 18-22. 10.1007/s00284-005-0156-1. Woodfolk JA, Slunt JB, Deuell B, Hayden ML, Platts-Mills TA: Definition of a Trichophyton protein associated with delayed hypersensitivity in humans. Evidence for immediate (IgE and IgG4) and delayed hypersensitivity to a single protein. J Immunol. 1996, 156: 1695-701. Monod M, Léchenne B, Jousson O, Grand D, Zaugg C, Stöcklin R, Grouzmann E: Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology. 2005, 151: 145-155. 10.1099/mic.0.27484-0. Gupta AK, Ahmad I, Borst I, Summerbell RC: Detection of xanthomegnin in epidermal materials infected with Trichophyton rubrum. J Invest Dermatol. 2000, 115: 901-905. 10.1046/j.1523-1747.2000.00150.x. Ajello L, Cheng SL: The perfect state of Trichophyton mentagrophytes. Sabouraudia. 1967, 5: 230-234. Symoens F, Jousson O, Planard C, Fratti M, Staib P, Mignon B, Monod M: Molecular analysis and mating behaviour of the Trichophyton mentagrophytesspecies complex. Int J Med Microbiol. 2010, Fraser JA, Stajich JE, Tarcha EJ, Cole GT, Inglis DO, Sil A, Heitman J: Evolution of the mating type locus: Insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis and Coccidioides posadasii.. Eukaryot Cell. 2007, 6: 622-629. 10.1128/EC.00018-07. Li W, Metin B, White TC, Heitman J: Organization and evolutionary trajectory of the mating type (MAT) locus in the dermatophyte and dimorphic fungal pathogens. Eukaryotic Cell. 2010, 9: 46-58. 10.1128/EC.00259-09. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP: Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009, 460: 1117-1121. 10.1038/nature08264. Takashio M: Sexual reproduction of some Arthroderma and Nannizia on diluted sabouraud agar with and without salts. Mykosen. 1972, 15: 11-17. Burmester A, Wöstemeyer J: Cloned mitochondrial DNA from the zygomycete Absidia glauca promotes autonomous replication in Saccharomyces cerevisiae. Curr Genet. 1986, 10: 435-441. 10.1007/BF00419870. Erhard M, Hipler UC, Burmester A, Brakhage AA, Wöstemeyer J: Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp Dermatol. 2008, 17: 356-361. 10.1111/j.1600-0625.2007.00649.x. Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA: Intimate bacterial-fungal interaction triggers biosynthesis of archetypical polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 2009, 106: 14558-14563. 10.1073/pnas.0901870106. Parra G, Blanco E, Guigo R: GeneID in Drosophila. Genome Res. 2000, 10: 511-515. 10.1101/gr.10.4.511. Romualdi A, Felder M, Rose D, Gausmann U, Schilhabel M, Glöckner G, Platzer M, Sühnel J, GenColors: Annotation and comparative genomics of prokaryotes made easy. Methods Mol Biol. 2007, 395: 75-96. Kent WJ: BLAT-the BLAST-like alignment tool. Genome Res. 2002, 12: 656-664. Zhang M, Gish W: Improved spliced alignment from an information theoretic approach. Bioinformatics. 2006, 22: 13-20. 10.1093/bioinformatics/bti748. Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010, 11: R106-10.1186/gb-2010-11-10-r106. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010, 26: 139-140. 10.1093/bioinformatics/btp616. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B. 1995, 57: 289-300. Biebl H, Pfennig N: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol. 1978, 117: 9-16. 10.1007/BF00689344. Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA: Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet. 2006, 49: 178-189. 10.1007/s00294-005-0047-9. Neuhoff V, Arold N, Taube D, Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988, 9: 255-262. 10.1002/elps.1150090603. Vödisch M, Albrecht D, Lessing F, Schmidt AD, Winkler R, Guthke R, Brakhage AA, Kniemeyer O: Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics. 2009, 9: 1407-1415. InterProScan. [http://www.ebi.ac.uk/Tools/InterProScan] NRPS-PKS: [http://www.nii.res.in/nrps-pks.html] Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007, 56: 564-577. 10.1080/10635150701472164. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520. PHYLIP: [http://evolution.genetics.washington.edu/phylip.html]