Mechanisms of chemoresistance in cancer stem cells
Tóm tắt
Chemotherapy is one of the standard methods of treatment in many cancers. While chemotherapy is often capable of inducing cell death in tumors and reducing the tumor bulk, many cancer patients experience recurrence and ultimately death because of treatment failure. In recent years, cancer stem cells (CSCs) have gained intense interest as key tumor-initiating cells that may also play an integral role in recurrence following chemotherapy. As such, a number of mechanisms of chemoresistance have been identified in CSCs. In this review, we describe a number of these mechanisms of chemoresistance including ABC transporter expression, aldehyde dehydrogenase (ALDH) activity, B-cell lymphoma-2 (BCL2) related chemoresistance, enhanced DNA damage response and activation of key signaling pathways. Furthermore, we evaluate studies that demonstrate potential methods for overcoming chemoresistance and treating chemoresistant cancers that are driven by CSCs. By understanding how tumor-initiating cells such as CSCs escape chemotherapy, more informed approaches to treating cancer will develop and may improve clinical outcomes for cancer patients.
Tài liệu tham khảo
Macconaill LE, Garraway LA: Clinical implications of the cancer genome. J Clin Oncology: Official J Am Soc Clin Oncology 2010, 28: 5219–5228. 10.1200/JCO.2009.27.4944
Goldenberg MM: Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 1999, 21: 309–318. 10.1016/S0149-2918(00)88288-0
Longley DB, Johnston PG: Molecular mechanisms of drug resistance. J Pathol 2005, 205: 275–292. 10.1002/path.1706
O’Brien CA, Kreso A, Dick JE: Cancer stem cells in solid tumors: an overview. Semin Radiat Oncol 2009, 19: 71–77. 10.1016/j.semradonc.2008.11.001
Kim U, Depowski MJ: Progression from hormone dependence to autonomy in mammary tumors as an in vivo manifestation of sequential clonal selection. Cancer Res 1975, 35: 2068–2077.
Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, Morrison SJ: Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 2010, 18: 510–523. 10.1016/j.ccr.2010.10.012
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367: 645–648. 10.1038/367645a0
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100: 3983–3988. 10.1073/pnas.0530291100
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63: 5821–5828.
Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST: Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008, 13: 153–166. 10.1016/j.ccr.2008.01.013
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al.: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007, 104: 10158–10163. 10.1073/pnas.0703478104
Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004, 101: 781–786. 10.1073/pnas.0307618100
Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia: Official J Leukemia Soc Am, Leukemia Res Fund, UK 2007, 21: 1423–1430. 10.1038/sj.leu.2404721
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67: 1030–1037. 10.1158/0008-5472.CAN-06-2030
Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008, 15: 504–514. 10.1038/sj.cdd.4402283
Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, et al.: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 2009, 28: 209–218. 10.1038/onc.2008.374
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005, 65: 10946–10951. 10.1158/0008-5472.CAN-05-2018
Chow EK, Fan LL: Chen X. Bishop JM: Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells. Hepatology; 2012.
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996, 183: 1797–1806. 10.1084/jem.183.4.1797
Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 2006, 103: 11154–11159. 10.1073/pnas.0603672103
Christgen M, Ballmaier M, Bruchhardt H, von Wasielewski R, Kreipe H, Lehmann U: Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Mol Cell Biochem 2007, 306: 201–212. 10.1007/s11010-007-9570-y
Haraguchi N, Inoue H, Tanaka F, Mimori K, Utsunomiya T, Sasaki A, Mori M: Cancer stem cells in human gastrointestinal cancers. Hum Cell 2006, 19: 24–29. 10.1111/j.1749-0774.2005.00004.x
Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006, 44: 240–251.
Shapiro AB, Corder AB, Ling V: P-glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer. European J biochemistry /FEBS 1997, 250: 115–121. 10.1111/j.1432-1033.1997.00115.x
Scharenberg CW, Harkey MA, Torok-Storb B: The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002, 99: 507–512. 10.1182/blood.V99.2.507
Sugawara I: Expression and functions of P-glycoprotein (mdr1 gene product) in normal and malignant tissues. Acta Pathol Jpn 1990, 40: 545–553.
Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E, Mesman E, Dale TC, Schinkel AH: The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med 2005, 11: 127–129. 10.1038/nm1186
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001, 7: 1028–1034. 10.1038/nm0901-1028
Cooray HC, Blackmore CG, Maskell L, Barrand MA: Localisation of breast cancer resistance protein in microvessel endothelium of human brain. NeuroReport 2002, 13: 2059–2063. 10.1097/00001756-200211150-00014
Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD, Miyake K, Resau JH, Bates SE: The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 2000, 113(Pt 11):2011–2021.
Kawabata S, Oka M, Shiozawa K, Tsukamoto K, Nakatomi K, Soda H, Fukuda M, Ikegami Y, Sugahara K, Yamada Y, et al.: Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 2001, 280: 1216–1223. 10.1006/bbrc.2001.4267
Dalton WS, Crowley JJ, Salmon SS, Grogan TM, Laufman LR, Weiss GR, Bonnet JD: A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer 1995, 75: 815–820. 10.1002/1097-0142(19950201)75:3<815::AID-CNCR2820750311>3.0.CO;2-R
Lancet JE, Baer MR, Duran GE, List AF, Fielding R, Marcelletti JF, Multani PS, Sikic BI: A phase I trial of continuous infusion of the multidrug resistance inhibitor zosuquidar with daunorubicin and cytarabine in acute myeloid leukemia. Leuk Res 2009, 33: 1055–1061. 10.1016/j.leukres.2008.09.015
Chow EK, Zhang XQ, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D: Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 2011, 3: 73ra21. 10.1126/scitranslmed.3001713
Ikawa M, Impraim CC, Wang G, Yoshida A: Isolation and characterization of aldehyde dehydrogenase isozymes from usual and atypical human livers. J Biol Chem 1983, 258: 6282–6287.
Sladek NE: Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 2003, 17: 7–23. 10.1002/jbt.10057
Hsu LC, Chang WC, Hoffmann I, Duester G: Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochem J 1999, 339(Pt 2):387–395.
Rhinn M, Dolle P: Retinoic acid signalling during development. Development 2012, 139: 843–858. 10.1242/dev.065938
Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C: Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 1999, 96: 9118–9123. 10.1073/pnas.96.16.9118
Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S, Del Bo R, Strazzer S, Bresolin N, Comi GP: Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 2006, 24: 975–985. 10.1634/stemcells.2005-0217
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al.: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1: 555–567. 10.1016/j.stem.2007.08.014
Ucar D, Cogle CR, Zucali JR, Ostmark B, Scott EW, Zori R, Gray BA, Moreb JS: Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact 2009, 178: 48–55. 10.1016/j.cbi.2008.09.029
Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, Garcia-Garcia E, Lopez-Rios F, Matsui W, et al.: A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009, 8: 310–314. 10.1158/1535-7163.MCT-08-0924
Hellsten R, Johansson M, Dahlman A, Sterner O, Bjartell A: Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS One 2011, 6: e22118. 10.1371/journal.pone.0022118
Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, Guan XY: Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Res: MCR 2008, 6: 1146–1153. 10.1158/1541-7786.MCR-08-0035
Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME: Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010, 32: 1195–1201. 10.1002/hed.21315
Hilton J: Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 1984, 44: 5156–5160.
Friedman HS, Colvin OM, Kaufmann SH, Ludeman SM, Bullock N, Bigner DD, Griffith OW: Cyclophosphamide resistance in medulloblastoma. Cancer Res 1992, 52: 5373–5378.
Sreerama L, Sladek NE: Cellular levels of class 1 and class 3 aldehyde dehydrogenases and certain other drug-metabolizing enzymes in human breast malignancies. Clinical cancer research: an official journal of the American Association for Cancer Research 1997, 3: 1901–1914.
Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, et al.: Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008, 3: e2428. 10.1371/journal.pone.0002428
Duong HQ, Hwang JS, Kim HJ, Kang HJ, Seong YS, Bae I: Aldehyde dehydrogenase 1A1 confers intrinsic and acquired resistance to gemcitabine in human pancreatic adenocarcinoma MIA PaCa-2 cells. Int J Oncol 2012, 41: 855–861.
Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster K, Shao C, Larsen JE, Sullivan LA, et al.: Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 2010, 70: 9937–9948. 10.1158/0008-5472.CAN-10-0881
Moreb JS, Maccow C, Schweder M, Hecomovich J: Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther 2000, 293: 390–396.
Quemener V, Quash G, Moulinoux JP, Penlap V, Ripoll H, Havouis R, Doutheau A, Gore J: In vivo antitumor activity of 4-amino 4-methyl 2-pentyne 1-al, an inhibitor of aldehyde dehydrogenase. In Vivo 1989, 3: 325–330.
Kim R, Emi M, Tanabe K: Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 2006, 57: 545–553. 10.1007/s00280-005-0111-7
Pegoraro L, Palumbo A, Erikson J, Falda M, Giovanazzo B, Emanuel BS, Rovera G, Nowell PC, Croce CM: A 14;18 and an 8;14 chromosome translocation in a cell line derived from an acute B-cell leukemia. Proc Natl Acad Sci USA 1984, 81: 7166–7170. 10.1073/pnas.81.22.7166
Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ: Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 1987, 80: 1512–1515. 10.1172/JCI113235
Kelly PN, Strasser A: The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 2011, 18: 1414–1424. 10.1038/cdd.2011.17
Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ: Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993, 75: 229–240. 10.1016/0092-8674(93)80065-M
Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S, et al.: Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995, 267: 1506–1510. 10.1126/science.7878471
Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N, de Kretser D, Metcalf D, Kontgen F, Adams JM, Cory S: Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci USA 1998, 95: 12424–12431. 10.1073/pnas.95.21.12424
Hamasaki A, Sendo F, Nakayama K, Ishida N, Negishi I, Nakayama K, Hatakeyama S: Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med 1998, 188: 1985–1992. 10.1084/jem.188.11.1985
Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ: Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 2000, 14: 23–27.
Strasser A, Harris AW, Bath ML, Cory S: Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990, 348: 331–333. 10.1038/348331a0
Konopleva M, Zhao S, Hu W, Jiang S, Snell V, Weidner D, Jackson CE, Zhang X, Champlin R, Estey E, et al.: The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 2002, 118: 521–534. 10.1046/j.1365-2141.2002.03637.x
Madjd Z, Mehrjerdi AZ, Sharifi AM, Molanaei S, Shahzadi SZ, Asadi-Lari M: CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours. Cancer Immun 2009, 9: 4.
Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G: Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007, 1: 389–402. 10.1016/j.stem.2007.08.001
Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY: CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008, 27: 1749–1758. 10.1038/sj.onc.1210811
Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP, Agrusa A, Dieli F, Zeuner A, Stassi G: Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res 2010, 70: 4655–4665. 10.1158/0008-5472.CAN-09-3953
Gonzalez C: Aurora-A in cell fate control. Science’s STKE: signal transduction knowledge environment 2002, 2002: pe48.
Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL: A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003, 423: 409–414. 10.1038/nature01593
Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T: Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007, 12: 528–541. 10.1016/j.ccr.2007.11.003
Bisson I, Prowse DM: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 2009, 19: 683–697. 10.1038/cr.2009.43
Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, et al.: Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008, 68: 4287–4295. 10.1158/0008-5472.CAN-07-6691
Noda T, Nagano H, Takemasa I, Yoshioka S, Murakami M, Wada H, Kobayashi S, Marubashi S, Takeda Y, Dono K, et al.: Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma. Br J Cancer 2009, 100: 1647–1658. 10.1038/sj.bjc.6605064
Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, Beckmann JS, Joseph JM, Muhlethaler-Mottet A, Gross N: The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene 2009, 28: 2245–2256. 10.1038/onc.2009.80
Chau WK, Ip CK, Mak AS, Lai HC, Wong AS: c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/betacatenin-ATP-binding cassette G2 signaling. Oncogene 2012., 16: Epub ahead of print Epub ahead of print 10.1038/onc.2012.290
Ranganathan P, Weaver KL, Capobianco AJ: Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 2011, 11: 338–351. 10.1038/nrc3035
Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB: Schwartz GK: gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009, 69: 573–582. 10.1158/0008-5472.CAN-08-2088
Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008, 68: 4311–4320. 10.1158/0008-5472.CAN-08-0364
McAuliffe SM, Morgan SL, Wyant GA, Tran LT, Muto KW, Chen YS, Chin KT, Partridge JC, Poole BB, Cheng KH, et al.: Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA 2012, 109: E2939–2948. 10.1073/pnas.1206400109
Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS: Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 2011, 17: 103–112.
Lin TL, Matsui W: Hedgehog pathway as a drug target: Smoothened inhibitors in development. OncoTargets and therapy 2012, 5: 47–58.
Song Z, Yue W, Wei B, Wang N, Li T, Guan L, Shi S, Zeng Q, Pei X, Chen L: Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One 2011, 6: e17687. 10.1371/journal.pone.0017687
Yao J, An Y, Wie JS, Ji ZL, Lu ZP, Wu JL, Jiang KR, Chen P, Xu ZK, Miao Y: Cyclopamine reverts acquired chemoresistance and down-regulates cancer stem cell markers in pancreatic cancer cell lines. Swiss Med Wkly 2011, 141: w13208.
Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW, Mahato RI: Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway. PLoS One 2012, 7: e40021. 10.1371/journal.pone.0040021
Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M, Landen CN: Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clinical Cancer Res: An Official J Am Assoc Cancer Res 2012, 18: 869–881. 10.1158/1078-0432.CCR-11-2188
Perkins ND: The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 2012, 12: 121–132.
Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G: Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 2009, 8: 158–166. 10.4161/cc.8.1.7533
Leizer AL, Alvero AB, Fu HH, Holmberg JC, Cheng YC, Silasi DA, Rutherford T, Mor G: Regulation of inflammation by the NF-kappaB pathway in ovarian cancer stem cells. Am J Reprod Immunol 2011, 65: 438–447. 10.1111/j.1600-0897.2010.00914.x
Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL, Wang W: Disulfiram modulated ROS-MAPK and NFkappaB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 2011, 104: 1564–1574. 10.1038/bjc.2011.126
Olcina M, Lecane PS, Hammond EM: Targeting hypoxic cells through the DNA damage response. Clin Cancer Res: An Official J Am Assoc Cancer Res 2010, 16: 5624–5629. 10.1158/1078-0432.CCR-10-0286
Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ: Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 2002, 22: 1834–1843. 10.1128/MCB.22.6.1834-1843.2002
Smith J, Tho LM, Xu N, Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 2010, 108: 73–112.
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444: 756–760. 10.1038/nature05236
Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN, Palagyi A, Eisen C, Ellwart JW, Rivera J, et al.: Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells 2011, 29: 418–429. 10.1002/stem.595
Venkatesha VA, Parsels LA, Parsels JD, Zhao L, Zabludoff SD, Simeone DM, Maybaum J, Lawrence TS, Morgan MA: Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 2012, 14: 519–525.