Learning with Probabilistic Representations

Machine Learning - Tập 29 - Trang 91-101 - 1997
Pat Langley1, Gregory M. Provan2, Padhraic Smyth3
1Intelligent Systems Laboratory, Daimler-Benz Research & Technology Center, Palo Alto
2Rockwell Science Center, Thousand Oaks
3Department of Information & Computer Science, University of California, Irvine

Tài liệu tham khảo

Anderson, J. R., & Matessa, M. (1992). Explorations of an incremental, Bayesian algorithm for categorization. Machine Learning, 9, 275–308. Charniak, E. (1993). Statistical language learning. Cambridge, MA: MIT Press. Hanson, R., Stutz, J., & Cheeseman, P. (1991). Bayesian classification with correlation and inheritance. Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (pp. 692–698). Sydney: Morgan Kaufmann. Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261–284. Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347. Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139–172. Reprinted in J.W. Shavlik & T. G. Dietterich (Eds.) (1990), Readings in machine learning. San Francisco: Morgan Kaufmann. Fisher, D. H., & Langley, P. (1990). The structure and formation of natural categories. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 26). Cambridge, MA: Academic Press. Geman, S.,& Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,6, 721–742. Iba, W. & Gennari, J. H. (1991). Learning to recognize movements. In D. H. Fisher, M. J. Pazzani, & P. Langley (Eds.), Concept formation: Knowledge and experience in unsupervised learning. San Francisco: Morgan Kaufmann. Jones, R. M., & VanLehn, K. (1994). Acquisition of children's addition strategies: A model of impasse-free, knowledge-level learning. Machine Learning, 16, 11–36. Jordan, M. I., & Jacobs, R. A. (1993). Supervised learning and divide-and-conquer: A statistical approach. Proceedings of the Tenth International Conference on Machine Learning (pp. 159–166). Amherst, MA: Morgan Kaufmann. Kononenko, I. (1991). Semi-naive Bayesian classifier. Proceedings of the Sixth European Working Session on Learning (pp. 206–219). Porto, Portugal: Pittman. Ourston, D., & Mooney, R. (1990). Changing the rules: A comprehensive approach to theory refinement. Proceedings of the Eighth National Conference on Artificial Intelligence (pp. 815–820). Boston: AAAI Press. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco: Morgan Kaufmann. Ron, D., Singer, Y., & Tishby, N. (1994). The power of amnesia. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.) Advances in Neural Information Processing Systems 6. San Francsico: Morgan Kaufmann. Rissanen, J., & Langdon, G. G. (1981). Universal coding and modeling. IEEE Transactions on Information Theory, 27, 12–23. Singh, M.,& Provan, G. M. (1995). Acomparison of induction algorithms for selective and non-selective Bayesian classifiers. Proceedings of the Twelfth International Conference on Machine Learning (pp. 497–505). Lake Tahoe, CA: Morgan Kaufmann. Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227–269. Stolcke, A., & Omohundro, S. (1994). Inducing probabilistic grammars by Bayesian model merging. Proceedings of the Second International Conference on Grammatical Inference and Applications (pp. 106–118). Alicante, Spain: Springer-Verlag. Towell, G., Shavlik, J., & Noordeweier, M. O. (1990). Refinement of approximate domain theories by knowledgebased neural networks. Proceedings of the Eighth National Conference on Artificial Intelligence (pp. 861–866). Boston: AAAI Press.