Immunobiology of Toll‐like receptors: Emerging trends

Immunology and Cell Biology - Tập 84 Số 4 - Trang 333-341 - 2006
Sachchida Nand Pandey1, Devendra K. Agrawal2,3,3
1Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
2Department of Internal Medicine, Creighton University School of Medicine Omaha Nebraska USA
3Department of Medical Microbiology and Immunology, Creighton University School of Medicine Omaha Nebraska USA

Tóm tắt

Toll‐like receptors (TLR), a family of evolutionarily conserved pathogen recognition receptors, play pivotal role as primary sensors of invading pathogens. TLR identify molecular motifs of infectious agents (pathogen associated molecular patterns) and elicit an effective defensive response against them. Mammalian TLR derive their name from the Drosophila Toll protein, with which they share sequence similarity. So far, expression of 10 TLR is known in humans. The adaptor proteins, myeloid differentiation factor 88 and Toll IL‐1 receptor (TIR) domain containing adaptor inducing IFN‐β (TRIF) are the key players in the TLR signalling cascade leading to the activation of nuclear factor (NF)‐κB and interferon regulatory factor‐3, respectively. Targeted manipulation of the TLR signalling pathway has immense therapeutic potential and may eventually prove to be a boon in the development of innovative treatments for diverse disease conditions. There is accumulating evidence that TLR agonists have tremendous potential as novel therapeutic targets. In this review, we have discussed the immunobiology of TLR and emphasize significant advances made within the ever‐expanding field of TLR that provide intriguing insights efficacious in unravelling the complexities associated with TLR.

Từ khóa


Tài liệu tham khảo

10.1038/90609

10.1146/annurev.immunol.21.120601.141126

Okinsky A, 2000, The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll‐like receptors, Proc. Natl Acad. Sci. USA, 97, 13 766, 10.1073/pnas.250476497

Nilson N, 2004, Lipopolysaccharide and double‐stranded RNA upregulate toll‐like receptor 2 independently of myeloid differentiation factor 88, J. Biol. Chem., 279, 39 727, 10.1074/jbc.M405027200

Wert C, 2001, Leptospiral lipopolysaccharide activates cells through a TLR‐dependent mechanism, Nat. Immunol., 2, 346, 10.1038/86354

Iwaki D, 2002, The extracellular toll‐like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus, J. Biol. Chem., 277, 24 315, 10.1074/jbc.M107057200

10.1074/jbc.M310175200

10.1038/35099560

10.1084/jem.20001858

10.4049/jimmunol.167.5.2887

10.1074/jbc.M100099200

10.4049/jimmunol.164.2.558

10.1126/science.1075565

10.4049/jimmunol.168.10.5233

10.1084/jem.20022194

Monick MM, 2003, Respiratory syncytial virus upregulates TLR4 and sensitizes airway epithelial cells, J. Biol. Chem., 278, 53 035, 10.1074/jbc.M308093200

10.1074/jbc.275.4.2251

10.1038/35074106

10.1126/science.1093620

10.1073/pnas.0400937101

10.1016/j.vaccine.2003.10.051

10.1016/j.vaccine.2004.01.037

10.1073/pnas.161293498

Hashimoto C, 1998, The toll gene of Drosophila, required for dorsal‐ventral embryonic polarity, appears to encode a trans‐membrane protein, Cell, 52, 269, 10.1016/0092-8674(88)90516-8

10.1016/0092-8674(91)90381-8

10.1016/S0092-8674(00)80172-5

10.1038/351355b0

10.1038/41131

10.1016/S0167-4889(02)00320-8

10.1073/pnas.0505077102

10.1038/35066006

10.1111/j.1365-2249.2005.02801.x

Nishiya T, 2005, TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements, J. Biol. Chem., 280, 37 107, 10.1074/jbc.M504951200

10.1128/IAI.71.12.6799-6807.2003

10.4049/jimmunol.173.3.2031

10.1128/IAI.73.11.7151-7160.2005

10.1038/ni1280

10.1016/j.bbrc.2005.11.123

10.1016/S1097-2765(00)80136-7

10.1126/science.1087262

10.4049/jimmunol.169.12.6668

10.1038/ni886

10.1126/science.278.5343.1612

10.4049/jimmunol.173.5.2913

10.1038/35085597

10.1038/ni1255

10.1038/ni986

10.1038/ni1061

10.1038/ni921

10.1126/science.1081315

10.1038/nature04369

10.1038/nature04374

10.1038/nature03308

10.1073/pnas.0508327102

Kaufmann A, 2005, ‘Host tissue damage’ signal ATP promotes non‐directional migration and negatively regulates TLR signaling in human monocytes, J. Biol. Chem., 280, 32 459, 10.1074/jbc.M505301200

10.4049/jimmunol.175.5.3339

10.1038/ni1110

10.1038/ni1050

10.1084/jem.20021790

10.1038/ni968

10.1016/S0092-8674(02)00827-9

10.1074/jbc.M109537200

Gingras S, 2004, Reexamination of the role of suppressor of cytokine signaling 1 (SOCS 1) in regulation of toll‐like receptor signaling, J. Biol. Chem., 279, 54 702, 10.1074/jbc.M411043200

10.1016/j.immuni.2005.02.006

Mikami F, 2005, Epidermal growth factor receptor acts as a negative regulator for bacterium nontypeable Haemophilus influenzae‐induced toll‐like receptor 2 expression via an Src‐dependent p38 mitogen activated protein kinase pathway, J. Biol. Chem., 280, 36 185, 10.1074/jbc.M503941200

10.1128/IAI.74.1.594-601.2006

10.4049/jimmunol.172.5.2739

10.1016/j.jaci.2004.04.050

10.1038/sj.gene.6364037

Carmalho I, 2003, Regulatory T cells selectively express toll‐like receptors and are activated by lipopolysaccharide, J. Exp. Med., 197, 403, 10.1084/jem.20021633

10.1186/1465-9921-6-100

10.1038/nm1315

10.4049/jimmunol.171.2.1001

Park JS, 2006, High mobility group box 1 protein (HMGB1) interacts with multiple Toll‐like receptors, Am. J. Physiol. Cell Physiol., 290, C1917

10.1165/rcmb.2003-0435OC

10.1074/jbc.M509352200

Homma L, 2005, A frequent toll‐like receptor (TLR) 2 polymorphism is a risk factor for coronary restenosis, J. Mol. Med., 83, 478, 10.1007/s00109-005-0643-7

10.1056/NEJMoa012673

10.1152/ajpheart.00143.2005

10.1161/hc5001.100631

10.1111/j.1462-5822.2005.00537.x

10.1074/jbc.M209634200

10.1074/jbc.272.21.13597

10.1161/01.ATV.0000079340.80744.B8

10.1038/nm1008

Michelsen KS, 2004, Lack of Toll‐like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E, Proc. Natl Acad. Sci USA, 101, 10 679, 10.1073/pnas.0403249101

Yang QW, 2005, Role of Toll‐like receptor 4/NF‐ kappa B pathway in monocyte‐endothelial adhesion induced by low shear stress and ox‐LDL, Biorheology, 42, 225

10.1161/01.CIR.0000129769.17895.F0

Hollestele SC, 2004, Toll‐like receptor 4 is involved in outward arterial remodeling, Circulation, 109, 393, 10.1161/01.CIR.0000109140.51366.72

10.1093/jnci/dji070

10.1016/j.neulet.2005.08.047

10.1172/JCI22832

10.1096/fj.05-4342fje

10.1016/j.healun.2005.01.003

10.1038/ni1116

10.1007/s00403-005-0594-4

10.1902/jop.2005.76.11.1950

Rasschaert J, 2005, Toll‐like receptor 3 and STAT‐1 contribute to double‐stranded RNA+ interferon‐γ‐induced apoptosis in primary pancreatic β cells, J. Biol. Chem., 280, 33 984, 10.1074/jbc.M502213200

Ogawa A, 2006, Toll‐like receptors 2 and 4 are differentially involved in Fas‐dependent apoptosis in Peyer's patch and the liver at an early stage after bile duct ligation in mice, Gut, 55, 105, 10.1136/gut.2005.065318

10.4049/jimmunol.169.5.2611

10.1093/emboj/19.13.3325

10.1038/nm832

10.1182/blood-2004-07-2656

10.4049/jimmunol.175.6.3964

Barton GM, 2005, Control of adaptive immune responses by Toll‐like receptors, Curr. Opin. Immunol., 14, 380, 10.1016/S0952-7915(02)00343-6

10.1038/ni1112

10.1038/nri1001

10.1111/j.1462-5822.2005.00506.x

10.4049/jimmunol.171.10.4984

10.4049/jimmunol.167.9.5067

10.4049/jimmunol.171.11.5837

Kleij D, 2002, A novel host‐parasite lipid cross‐talk: schistosomal lysophosphatidylserine activates Toll‐like receptor 2 and affects immune polarization, J. Biol. Chem., 277, 48 122

10.4049/jimmunol.174.2.742

10.1126/science.1096158

10.4049/jimmunol.171.12.6820

10.1002/1521-4141(200111)31:11<3153::AID-IMMU3153>3.0.CO;2-0

Pinhal Engfield G, 2003, An angiogenic switch in macrophages involving synergy between toll‐like receptors 2, 4, 7 and 9 and adenosine A (2A) receptors, J. Pathol., 163, 711

10.1165/rcmb.2004-0341OC

Di Perna G, 2004, Poxvirus protein NIL targets the I‐kappaB kinase complex, inhibiting signaling to NF‐κB by the tumour necrosis factor superfamily of receptors, and inhibits NF‐κB and IRF signaling by toll‐like receptors, J. Biol. Chem., 279, 36 570, 10.1074/jbc.M400567200

10.1073/pnas.0408824102

10.1111/j.1462-5822.2004.00452.x

Weertana RD, 2005, TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resquimod (R‐848), Vaccine, 23, 5263, 10.1016/j.vaccine.2005.06.024

Visintin A, 2005, Pharmacological inhibition of endotoxin responses is achieved by targeting TLR4 coreceptor MD‐2, J. Immunol., 179, 6465, 10.4049/jimmunol.175.10.6465

10.1002/eji.200324569

10.4049/jimmunol.174.12.7558

10.4049/jimmunol.175.3.1983