A Eu 3+ -Eu 2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells

American Association for the Advancement of Science (AAAS) - Tập 363 Số 6424 - Trang 265-270 - 2019
Ligang Wang1, Huanping Zhou1, Junnan Hu1, Bolong Huang2, Mingzi Sun2, Bo‐Wei Dong1, Guanghaojie Zheng1, Yuan Huang1, Yihua Chen1, Liang Li1, Ziqi Xu1, Nengxu Li1, Zheng Liu1, Qi Chen3, Ling‐Dong Sun1, Chun‐Hua Yan1
1Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
2Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
3Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China.

Tóm tắt

A redox road to recovery Device longevity is a key issue for organic-inorganic perovskite solar cells. Encapsulation can limit degradation arising from reactions with oxygen and water, but light, electric-field, and thermal stresses can lead to metastable elemental lead and halide atom defects. Wang et al. show that for the lead-iodine system, the introduction of the rare earth europium ion pair Eu 3+ -Eu 2+ can shuttle electrons and recover lead and iodine ions (Pb 2+ and I ). Devices incorporating this redox shuttle maintained more than 90% of their initial power conversion efficiencies under various aging conditions. Science , this issue p. 265

Từ khóa


Tài liệu tham khảo

10.1021/ja809598r

10.1126/science.1228604

10.1126/science.1254050

10.1038/nnano.2014.181

10.1002/adma.201502586

10.1038/nphoton.2013.341

10.1126/science.aaa9272

10.1126/science.aan2301

National Renewable Energy Laboratory (NREL) Efficiency chart (2018); www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20181214.pdf.

10.1002/aenm.201501420

10.1002/aenm.201501066

10.1039/C5EE02733K

10.1038/ncomms15684

10.1126/science.aam6323

10.1002/pip.1182

10.1002/aenm.201100344

10.1021/acsenergylett.7b00217

10.1021/nl500390f

10.1002/aenm.201500213

10.1039/C5TA09165A

10.1039/C5EE03522H

10.1126/science.aah5557

10.1002/adem.201300172

10.1039/C5TA00358J

10.1021/jacs.5b10614

10.1002/aenm.201401692

10.1039/C5NR01820J

10.1038/nchem.2324

10.1002/anie.201604880

10.1002/cphc.201800002

10.1038/nenergy.2016.195

10.1021/cm5041997

10.1021/acs.jpcc.6b11853

10.1021/acs.jpcc.7b08948

10.1126/science.aad1818

10.1002/adma.201505162

10.1002/adma.201501156

10.1016/0039-6028(82)90391-0

10.1039/C6TA06497C

10.1039/C6DT03723B

10.1021/acs.jpcc.5b07728

10.1002/adma.201603808

10.1038/ncomms10030

10.1002/adma.201606774

D. R. Lide CRC Handbook of Chemistry and Physics vol. 5 (CRC Press ed. 84 2003) pp. 88.

10.1002/zaac.200900075

10.1021/cm970352d

10.1021/acs.nanolett.7b04575

ASTM E948-16 Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight. ASTM International (2016). 10.1520/E0948-16

10.1021/am5090385

10.1021/acsnano.6b02613

10.1021/acsami.7b05875

10.1524/zkri.220.5.567.65075

10.1103/PhysRevB.46.6671

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.44.13175.3

10.1063/1.555839