Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels
Tóm tắt
Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.
Tài liệu tham khảo
Peaking of world oil production: Impacts, mitigation, and risk management. [http://www.netl.doe.gov]
Chisti Y: Biodiesel from microalgae. Biotechnology Advances. 2007, 25: 294-306. 10.1016/j.biotechadv.2007.02.001.
Kurano N, Sasaki T, Miyachi S: Carbon dioxide and microalgae. Advances In Chemical Conversions For Mitigating Carbon Dioxide. 1998, Amsterdam: Elsevier Science Publ B V, 114: 55-63. full_text.
NREL: A look back at the US Department of Engergy's aquatic species program: biodiesel from algae, report NREL/TP-580-24190. 1998, National Renewable Energy Labs
Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W: Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology. 1997, 69: 451-455. 10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M.
Dinh LTT, Guo Y, MAnnan S: Sustainability evaluation of biodiesel production using multicriteria decision-making. Environmental Progress and Sustainable Energy. 2009, 28: 38-46. 10.1002/ep.10335.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC: Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell. 2010, 9: 486-501. 10.1128/EC.00364-09.
Benamotz A, Tornabene TG, Thomas WH: Chemical profile of selected species of microalgae with emphasis on lipids. Journal of Phycology. 1985, 21: 72-81. 10.1111/j.0022-3646.1985.00072.x.
Hoshida H, Ohira T, Minematsu A, Akada R, Nishizawa Y: Accumulation of eicosapentaenoic acid in Nannochloropsis sp in response to elevated CO2 concentrations. Journal of Applied Phycology. 2005, 17: 29-34. 10.1007/s10811-005-5512-9.
Li YQ, Horsman M, Wang B, Wu N, Lan CQ: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology. 2008, 81: 629-636. 10.1007/s00253-008-1681-1.
Livne A, Sukenik A: Lipid-synthesis and abundance of acetyl CoA carboxylase in Isochrysis galbana (Prymnesiophyceae) following nitrogen starvation. Plant and Cell Physiology. 1992, 33: 1175-1181.
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR: Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering. 2009, 102: 100-112. 10.1002/bit.22033.
Sriharan S, Bagga D, Nawaz M: The effects of nutrients and temperature on biomass, growth, lipid production, and fatty-acid composition of Cyclotella cryptica Reimann, Lewin, And Guillard. Applied Biochemistry and Biotechnology. 1991, 28-9: 317-326. 10.1007/BF02922611.
Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A: Effects Of Co2 concentration during growth on fatty-acid composition in microalgae. Plant Physiology. 1990, 93: 851-856. 10.1104/pp.93.3.851.
Miller R, Wu GX, Deshpande RR, Vieler A, Gartner K, Li XB, Moellering ER, Zauner S, Cornish AJ, Liu BS, et al: Changes in Transcript Abundance in Chlamydomonas reinhardtii following Nitrogen Deprivation Predict Diversion of Metabolism. Plant Physiology. 2010, 154: 1737-1752. 10.1104/pp.110.165159.
Moellering ER, Benning C: RNA Interference Silencing of a Major Lipid Droplet Protein Affects Lipid Droplet Size in Chlamydomonas reinhardtii. Eukaryotic Cell. 2010, 9: 97-106. 10.1128/EC.00203-09.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal. 2008, 54: 621-639. 10.1111/j.1365-313X.2008.03492.x.
Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levesque CA, Tisserat N, Buell CR: Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics. 2008, 9 (1): 542-10.1186/1471-2164-9-542.
Parchman TL, Geist KS, Grahnen JA, Benkman GW, Buerkle CA: Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics. 2010, 11: 180-10.1186/1471-2164-11-180.
Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology. 2008, 17: 1636-1647. 10.1111/j.1365-294X.2008.03666.x.
Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. Bmc Genomics. 2009, 10 (219): 1-18.
Takagi M, Yoshida T: Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering. 2006, 101: 223-226. 10.1263/jbb.101.223.
Goyal A: Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiology and Biochemistry. 2007, 45: 705-710. 10.1016/j.plaphy.2007.05.009.
Goyal A, Brown AD, Gimmler H: Regulation of salt-induced starch degradation in Dunaliella tertiolecta. Journal of Plant Physiology. 1987, 127: 77-96.
Ben-Amotz A, Polle JEW, Rao DVS: The alga Dunaliella. 2009, Enfield, NH: Science Publishers
Hosseini Tafreshi A, Shariati M: Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology. 2009, 107: 14-35. 10.1111/j.1365-2672.2009.04153.x.
Barzegari A, Hejazi MA, Hosseinzadeh N, Eslami S, Aghdam EM, Hejazi MS: Dunaliella as an attractive candidate for molecular farming. Molecular Biology Reports. 2010, 37: 3427-3430. 10.1007/s11033-009-9933-4.
Hirokawa T, Hata M, Takeda H: Correlation between the starch level and the rate of starch synthesis during the developmental cycle of Chlorella ellipsoidea. Plant and Cell Physiology. 1982, 23: 813-820.
Ramazanov A, Ramazanov Z: Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycological Research. 2006, 54: 255-259. 10.1111/j.1440-1835.2006.00416.x.
Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell. 2009, 8: 1856-1868. 10.1128/EC.00272-09.
Wang H, Zhang HM, Wong YH, Voolstra C, Ravasi T, Bajic VB, Quan PY: Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. Proteomics. 2010, 10: 2972-2981. 10.1002/pmic.201000056.
Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS: De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics. 2010, 11:
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research. 2008, 36: 3420-3435. 10.1093/nar/gkn176.
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research. 2007, 35: W182-W185. 10.1093/nar/gkm321.
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 1999, 27: 29-34. 10.1093/nar/27.1.29.
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG: Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology. 2010, 21: 277-286. 10.1016/j.copbio.2010.03.005.
Griffiths G, Stobart A: Fatty acid biosynthesis and triacylglycerol assembly. Handbook of Food Enzymology. 2002, CRC Press
Yap CY, Chen F: Polyunsaturated fatty acids: Biological significance, biosynthesis, and production by microalgae and microalgae-like organisms. Algae and their Biotechnological Potential. Edited by: Chen F, Jiang Y. 2000, Dordrecht, Netherlands: Kluwer Academic Publishers, 1-32.
Evans RW, Kates M, Ginzburg M, Ginzburg BZ: Lipid-composition of halotolerant algae, Dunaliella parva lerche and Dunaliella tertiolecta. Biochimica et Biophysica Acta. 1982, 712: 186-195.
Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD: Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology. 1989, 128: 219-240. 10.1016/0022-0981(89)90029-4.
Ohlrogge J, Browse J: Lipid biosynthesis. Plant Cell. 1995, 7: 957-970. 10.1105/tpc.7.7.957.
Jaworski JG, Clough RC, Barnum SR: A cerulenin insensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiology. 1989, 90: 41-44. 10.1104/pp.90.1.41.
Gurr MI, Harwood JL: Lipid biochemistry. 2002, Oxford, UK: Blackwell Science Ltd
Schultz DJ, Ohlrogge JB: Metabolic engineering of fatty acid biosynthesis. Lipid Biotechnology. Edited by: Gardner HW, Kuo TM. 2002, New York: Marcel Dekker AG
Verwoert I, Vanderlinden KH, Walsh MC, Nijkamp HJJ, Stuitje AR: Modification of Brassica napus seed oil by expression of the Escherichia coli FabH gene, encoding 3-ketoacyl-acyl carrier protein synthase-III. Plant Molecular Biology. 1995, 27: 875-886. 10.1007/BF00037016.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC: Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell. 2010, 9 (4): 486-501. 10.1128/EC.00364-09.
Khozin-Goldberg I, Cohen Z: Unraveling algal lipid metabolism: Recent advances in gene identification. Biochimie.
Courchesne NMD, Parisien A, Wang B, Lan CQ: Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology. 2009, 141: 31-41. 10.1016/j.jbiotec.2009.02.018.
Coleman RA, Lee DP: Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research. 2004, 43: 134-176. 10.1016/S0163-7827(03)00051-1.
Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne H: Phospholipid: diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97: 6487-6492. 10.1073/pnas.120067297.
Padham AK, Hopkins MT, Wang TW, McNamara LM, Lo M, Richardson LGL, Smith MD, Taylor CA, Thompson JE: Characterization of a plastid triacylglycerol lipase from Arabidopsis. Plant Physiology. 2007, 143: 1372-1384. 10.1104/pp.106.090811.
Wendel AA, Lewin TM, Coleman RA: Glycerol-3-phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids. 2009, 1791: 501-506. 10.1016/j.bbalip.2008.10.010.
Kroon JTM, Wei W, Simon WJ, Slabas AR: Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry. 2006, 67: 2541-2549. 10.1016/j.phytochem.2006.09.020.
Zou JT, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC: Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell. 1997, 9: 909-923. 10.1105/tpc.9.6.909.
Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang BQ, Banas W, Banas A, Stymne S: Cloning and functional characterization of a Phospholipid: Diacylglycerol acyltransferase from Arabidopsis. Plant Physiology. 2004, 135: 1324-1335. 10.1104/pp.104.044354.
Ball SG, Morell MK: From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology. 2003, 54: 207-233. 10.1146/annurev.arplant.54.031902.134927.
Choi SP, Nguyen MT, Sim SJ: Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology. 2010, 101: 5330-5336. 10.1016/j.biortech.2010.02.026.
Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology. 2008, 99: 5270-5295. 10.1016/j.biortech.2007.11.013.
Lin CY, Chang CC, Hung CH: Fermentative hydrogen production from starch using natural mixed cultures. International Journal of Hydrogen Energy. 2008, 33: 2445-2453. 10.1016/j.ijhydene.2008.02.069.
Argun H, Kargi F: Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy. 2010, 35: 6170-6178. 10.1016/j.ijhydene.2010.03.132.
Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH: Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008, 319: 1238-1240. 10.1126/science.1151861.
Ball SG: Regulation of starch biosynthesis. Advances in Photosynthesis. 1998, 7: 549-567. full_text.
Streb S, Egli B, Eicke S, Zeeman SC: The debate on the pathway of starch synthesis: A closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway. Plant Physiology. 2009, 151: 1769-1772. 10.1104/pp.109.144931.
Kombrink E, Wober G: Identification and subcellular-localization of starch-metabolizing enzymes in the green-alga Dunaliella marina. Planta. 1980, 149: 130-137. 10.1007/BF00380873.
Deschamps P, Haferkamp I, d'Hulst C, Neuhaus HE, Ball SG: The relocation of starch metabolism to chloroplasts: when, why and how. Trends in Plant Science. 2008, 13: 574-582. 10.1016/j.tplants.2008.08.009.
Smith AM: Prospects for increasing starch and sucrose yields for bioethanol production. Plant Journal. 2008, 54: 546-558. 10.1111/j.1365-313X.2008.03468.x.
Hirano A, Ueda R, Hirayama S, Ogushi Y: CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy. 1997, 22: 137-142. 10.1016/S0360-5442(96)00123-5.
Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC: Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell. 2010, 9: 1251-1261. 10.1128/EC.00075-10.
Ratledge C: Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004, 86: 807-815. 10.1016/j.biochi.2004.09.017.
Chen H, Jiang JG: Osmotic responses of Dunaliella to the changes of salinity. Journal of Cellular Physiology. 2009, 219: 251-258. 10.1002/jcp.21715.
SeqClean sequence trimming and validation tool. [http://sourceforge.net/projects/seqclean/]
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research. 2007, 35: 7188-7196. 10.1093/nar/gkm864.
Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. Journal of Molecular Biology. 1990, 215: 403-410.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene Ontology: tool for the unification of biology. Nature Genetics. 2000, 25: 25-29. 10.1038/75556.
Mao XZ, Cai T, Olyarchuk JG, Wei LP: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005, 21: 3787-3793. 10.1093/bioinformatics/bti430.
Klukas C, Schreiber F: Dynamic exploration and editing of KEGG pathway diagrams. Bioinformatics. 2007, 23: 344-350. 10.1093/bioinformatics/btl611.
Ewen-Campen B, Shaner N, Panfilio KA, Suzuki Y, Roth S, Extavour CG: The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics. 2011, 12: 61-10.1186/1471-2164-12-61.