Flow‐compensated intravoxel incoherent motion diffusion imaging

Magnetic Resonance in Medicine - Tập 74 Số 2 - Trang 410-419 - 2015
Andreas Wetscherek1, Bram Stieltjes2, Frederik B. Laun1,2
1Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
2Quantitative Imaging-based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany

Tóm tắt

PurposeThe pseudo‐diffusion coefficient D* in intravoxel incoherent motion (IVIM) imaging was found difficult to seize. Flow‐compensated diffusion gradients were used to test the validity of the commonly assumed biexponential limit and to determine not only D*, but also characteristic timescale τ and velocity v of the incoherent motion.Theory and MethodsBipolar and flow‐compensated diffusion gradients were inserted into a flow‐compensated single‐shot EPI sequence. Images were obtained from a pipe‐shaped flow phantom and from healthy volunteers. To calculate the IVIM signal outside the biexponential limit, a formalism based on normalized phase distributions was developed.ResultsThe flow‐compensated diffusion gradients caused less signal attenuation than the bipolar ones. A signal dependence on the duration of the flow‐compensated gradients was found at low b‐values in the volunteer datasets. The characteristic IVIM parameters were estimated to be v = 4.60 ± 0.34 mm/s and τ = 144 ± 10 ms for liver and v = 3.91 ± 0.54 mm/s and τ = 224 ± 47 ms for pancreas.ConclusionOur results strongly indicate that the biexponential limit does not adequately model the diffusion signal in liver and pancreas. By using both bipolar and flow‐compensated diffusion gradients of different duration, the characteristic timescale and velocity of the incoherent motion can be determined. Magn Reson Med 74:410–419, 2015. © 2014 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1148/radiology.161.2.3763909

10.1148/radiology.168.2.3393671

10.1002/mrm.1910270116

10.1002/jmri.22100

10.1148/radiol.12111327

10.1097/RLI.0b013e31826ef901

10.1148/radiol.2493080080

10.1097/RLI.0b013e3181b62271

10.1016/j.mri.2011.06.001

10.1097/RLI.0b013e31826a0a49

10.1002/mrm.22740

10.1007/s00234-013-1154-9

10.1016/j.ejrad.2012.10.012

10.1148/radiol.12120584

10.1007/s00330-012-2604-1

10.1002/mrm.22565

10.1371/journal.pone.0072856

10.1097/RLI.0b013e3182396410

10.1002/jmri.24140

10.1148/radiol.12120686

10.1002/mrm.23193

10.1016/j.mri.2011.03.004

10.1002/mrm.22982

10.1016/j.media.2012.12.001

10.1002/mrm.24649

10.1103/RevModPhys.79.1077

10.1002/mrm.1910390218

10.1002/mrm.10171

10.1002/mrm.1910390209

10.1002/mrm.1910400112

10.1002/mrm.1910170114

10.1063/1.1336810

10.1118/1.596093

10.1002/mrm.10308

10.1016/0378-4363(81)90182-0

10.1002/nbm.1531

10.1016/0022-2364(85)90033-2

10.1016/0022-2364(85)90111-8

10.1118/1.597170

10.1002/mrm.1910320407

10.1002/nbm.1591

2010 Georg Thieme Verlag New York R Klinke H‐C Pape A Kurtz S Silbernagl Auflage Physiologie 191

Kunsch K, 2000, Der Mensch in Zahlen Eine Datensammlung in Tabellen mit über 20.000 Einzelwerten, 64

10.1007/BF02364653

10.1016/0006-8993(81)90619-3

10.1148/radiology.210.3.r99fe17617

10.1002/jmri.23796

10.1002/mrm.21127

10.1038/35025220

10.1126/science.1104819

10.1038/nm.3289