Der Grad erzeugender Funktionen von Invariantenringen
Tài liệu tham khảo
Adamovich, O.M., Golovina, E.O.: Simple linear Lie groups having a free algebra of invariants. Sel. Math. Sov.3, 183–220 (1983/84)
Andreev, E.M., Vinberg, E.B., Elashvili, A.G.: Orbits of greatest dimension in semisimple linear Lie groups. Funct. Anal. Appl.1, 257–261 (1967)
Bourbaki, N.: Groupes et algèbres de Lie VIII. Paris: Hermann 1975
Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl.6, 111–244 (1957)
Elashvili, A.G.: Canonical form and stationary subalgebras of points of general positions for simple linear Lie groups. Funct. Anal. Appl.6, 44–53 (1972)
Elashvili, A.G.: Stationary subalgebras of points of the common state for irreducible linear Lie groups. Funct. Anal. Appl.6, 139–148 (1972)
Hochster, M., Roberts, J.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macauley. Adv. Math.13, 115–175 (1974)
Kac, V.: Some remarks on nilpotent orbits. J. Algebra64, 190–213 (1980)
Knop, F.: Über die Glattheit von Quotientenabbildungen. Manusc. Math.56, 419–427 (1986)
Littelmann, P.: Koreguläre und äquidimensionale Darstellungen halbeinfacher Liegruppen. J. Algebra (in print)
Luna, D.: Slices étales. Bull. Soc. Math. France, Mem.33, 81–105 (1973)
Luna, D., Richardson, R.W.: A generalisation of the Chevalley restriction theorem. Duke Math. J.46, 487–496 (1979)
Murthy, M.P.: A note on factorial rings. Archiv Math.15, 418–420 (1964)
Sato, M., Kimura, T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J.65, 1–155 (1977)
Schwarz, G.: Lifting smooth homotopies of orbit spaces. Publ. IHES51, 37–135 (1980)
Schwarz, G.: Representations of simple Lie groups with regular rings of invariants. Invent. Math.49, 167–191 (1978)
Stanley, R.: Hilbert functions of graded algebras. Adv. Math.28, 57–83 (1978)
Weyl, H.: The classical groups. Princeton: Princeton University Press 1946