Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐xClx Perovskite Solar Cells: Kinetics and Mechanisms

Advanced Energy Materials - Tập 6 Số 13 - 2016
Andrew J. Pearson1, Giles E. Eperon2,3, Paul E. Hopkinson4,5, Severin N. Habisreutinger2, Jacob Tse‐Wei Wang2, Henry J. Snaith2, Neil C. Greenham1
1Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
2Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
3Present Address: Department of Chemistry, University of Washington Seattle, Washington 98195, United States.
4Centre for Advanced Materials Universität Heidelberg Heidelberg 69120 Germany
5Kirchhoff‐Institut für Physik Universität Heidelberg Heidelberg 69120 Germany

Tóm tắt

The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market‐competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen‐induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build‐up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge‐extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.

Từ khóa


Tài liệu tham khảo

10.1021/ja809598r

10.1126/science.1228604

10.1038/nature12340

10.1038/nphoton.2014.134

10.1021/jz4020162

10.1126/science.1245473

10.1021/nl400349b

10.1039/c3ee43822h

10.1021/nl5048779

10.1021/ic401215x

10.1021/jz5005285

10.1038/nnano.2014.149

10.1038/nnano.2015.90

10.1126/science.1258307

10.1038/ncomms6404

10.1038/nphoton.2015.82

10.1039/C4TA04994B

10.1002/aenm.201500963

10.1038/nnano.2015.139

10.1126/science.1254763

10.1002/ente.201500045

10.1126/science.aaa9272

10.1039/c3ta10518k

10.1021/nn506864k

10.1021/ja511132a

10.1021/acs.chemmater.5b00660

10.1021/nl501982b

10.1021/acs.jpclett.5b00545

10.1039/C3TA13606J

10.1126/science.1254050

10.1021/acsnano.5b03626

10.1021/nl500390f

10.1002/anie.201406466

10.1039/C4EE01589D

10.1038/srep00591

10.1039/c3ee40810h

10.1002/aenm.201500962

10.1021/jz500113x

10.1021/jacs.5b00761

10.1021/jz5011187

10.1039/C4EE03664F

10.1063/1.4890246

10.1038/ncomms8497

10.1039/C4MH00238E

10.1039/C4EE04064C

10.1038/nmat4150

10.1021/acs.jpclett.5b01645

10.1021/jz501392m

10.1039/C4TA04969A

10.1021/acs.jpclett.5b01381

10.1021/nn5036476

10.1002/adfm.201002154

10.1063/1.3247547

10.1016/j.orgel.2015.12.024

10.1021/acs.jpclett.5b00953

10.1039/c4ta01786b

10.1039/C3EE43991G

10.1063/1.4891275

10.1002/adma.201401685

10.1038/ncomms8081

10.1002/anie.201503153

10.1039/C5TA01221J

10.1038/ncomms7142

10.1039/c3ee43822h

10.1002/aenm.201501310

10.1002/aenm.201502206

10.1126/sciadv.1501170

10.1039/C5TA03443D