Cultivating mathematical skills: from drill-and-practice to deliberate practice

ZDM - Tập 49 - Trang 625-636 - 2017
Erno Lehtinen1, Minna Hannula-Sormunen1, Jake McMullen1, Hans Gruber1,2
1Department of Teacher Education, University of Turku, Turku, Finland
2Department of Educational Science, University of Regensburg, Regensburg, Germany

Tóm tắt

Contemporary theories of expertise development highlight the crucial role of deliberate practice in the development of high level performance. Deliberate practice is practice that intentionally aims at improving one’s skills and competencies. It is not a mechanical or repetitive process of making performance more fluid. Instead, it involves a great deal of thinking, problem solving, and reflection for analyzing, conceptualizing, and cultivating developing performance. This includes directing and guiding future training efforts that are then fine-tuned to dynamically evolving levels of performance. Expertise studies, particularly in music and sport, have described early forms of deliberate practice among children. These findings are made use of in our analysis of the various forms of practice in school mathematics. It is widely accepted that mathematics learning requires practice that results in effortless conducting of lower level processes (such as quick and accurate whole number arithmetic with small numbers), which relieve cognitive capacity for more complex tasks. However, the typical training of mathematical skills in educational contexts can be characterized as drill-and-practice that helps automatize basic skills, but often leads to inert routine skills instead of adaptive and flexible number knowledge. In this article we summarize findings of studies which describe students’ self-initiated, deliberate practice in learning number knowledge and intervention studies applying deliberate practice in mathematics teaching, including technology-based learning environments aimed at triggering practice that goes beyond mechanical repeating of number skills.

Tài liệu tham khảo

Araújo, D., Fonseca, C., Davids, K., Garganta, J., Volossovitch, A., Brandão, R., & Krebs, R. (2010). The role of ecological constraints on expertise development. Talent Development & Excellence, 2, 165–179. Baroody, A.J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 1–33). London: Erlbaum. Batchelor, S. (2014). Dispositional factors affecting children’s early numerical development (Doctoral thesis, Loughborough University, Leicestershire, United Kingdom). https://dspace.lboro.ac.uk/2134/17474. Batchelor, S., Inglis, M., & Gilmore, C. (2015). Spontaneous focusing on numerosity and the arithmetic advantage. Learning and Instruction, 40, 79–88. doi:10.1016/j.learninstruc.2015.09.005. Bojorque, G., Torbeyns, J., Hannula-Sormunen, M.M., Van Nijlen, D., & Verschaffel, L. (2016). Development of SFON in Ecuadorian Kindergartners. European Journal of Psychology of Education. doi:10.1007/s10212-016-0306-9. Bonneville-Roussy, A., & Bouffard, T. (2015). When quantity is not enough: Disentangling the roles of practice time, self-regulation and deliberate practice in musical achievement. Psychology of Music, 43, 686–704. doi:10.1177/0305735614534910. Boshuizen, H. P. A., Schmidt, H. G., Custers, E. J. F. M., & van de Wiel, M. W. J. (1995). Knowledge development and restructuring in the domain of medicine: The role of theory and practice. Learning and Instruction, 5, 269–289. Bransford, J. D., Barron, B., Pea, R., Meltzoff, A., Kuhl, P., Bell, P., Sabelli, N. (2006). Foundations and opportunities for an interdisciplinary science of learning. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 19–34). New York: Cambridge University Press. Brezovszky, B., Rodriguez-Aflecht, G., McMullen, J., Veermans, K., Pongsakdi, N., Hannula-Sormunen, M. M., & Lehtinen, E. (2015). Developing adaptive number knowledge with the Number Navigation game-based learning environment. In J. Torbeyns, E. Lehtinen & J. Elen (Eds.), Describing and studying domain-specific serious games (pp. 155–170). New York: Springer. Brezovszky, B., McMullen, J., Veermans, K., Hannula-Sormunen, M., Rodríguez-Aflecht, G., Pongsakdi, N. & Lehtinen E. (submitted). The effects of the Number Navigation game-based training on primary school students’ arithmetic skills and knowledge. Bronkhorst, L. H., Meijer, P. C., Koster, B., & Vermunt, J. D. H. M. (2014). Deliberate practice in teacher education. European Journal of Teacher Education, 37, 18–34. Brownell, W. A. (1944). When is arithmetic meaningful? Journal of Educational Research, 38(7), 481–498. Côte´, J., & Hay, J. (2002). Children’s involvement in sport: A developmental perspective. In J. M. Silva & D. Stevens (Eds.), Psychological foundations in sport (pp. 484–502). Boston:Merrill. Davidson, J. W., Howe, M. J. A., Moore, D., & Sloboda, J. A. (1996). The role of parental influences in the development of musical performance. British Journal of Developmental Psychology, 14, 399–412. Davis, J. T. M., Cullen, E., & Suddendorf, T. (2016). Understanding deliberate practice in preschool-aged children. The Quartely Journal of Experimental Psychology, 69, 361–380. doi:10.1080/17470218.2015.1082140. Degner, S., Lehmann, A. C., & Gruber, H. (2003). Expert learning in the domain of jazz guitar music. In R. Kopiez, A. C. Lehmann, I. Wolther & C. Wolf (Eds.), Proceedings of the 5th Triennial ESCOM Conference (pp. 384–388). Hannover:University of Music and Drama. Edens, K. M., & Potter, E. F. (2013). An exploratory look at the relationships among math skills, motivational factors and activity choice. Early Childhood Education Journal, 41, 235–243. doi:10.1007/s10643-012-0540-y. Ericsson, K. A. (2014). Why expert performance is special and cannot be extrapolated from studies of performance in the general population: A response to criticisms. Intelligence, 45, 81–103. doi:10.1016/j.intell.2013.12.001. Ericsson, K. A. (2016). Summing up hours of any type of practice versus identifying optimal practice activities: Commentary on Macnamara, Moreau, & Hambrick (2016). Perspectives on Psychological Science, 11, 351–354. doi:10.1177/1745691616635600. Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.). (2006). The Cambridge handbook of expertise and expert performance. Cambridge: Cambridge University Press. Ericsson, K. A., Krampe, R., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406. Ericsson, K. A., Prietula, M. J., & Cokely, E. T. (2007). The making of an expert. Harvard Business Review, 85, 1–8. Fuchs, L. S., Powell, S. R., Hamlett, C. L., Fuchs, D., Cirino, P. T., & Fletcher, J. M. (2008). Remediating computational deficits at third grade: A randomized field trial. Journal of Research on Educational Effectiveness, 1, 2–32. Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2010). The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learning and Individual Differences, 20, 89–100. Gray, S. A., & Reeve, R. A. (2016). Number-specific and general cognitive markers of preschoolers’ math ability profiles. Journal of Experimental Child Psychology, 147, 1–21. doi:10.1016/j.jecp.2016.02.004. Gruber, H., Degner, S., & Lehmann, A. C. (2004). Why do some commit themselves in deliberate practice for many years–and so many do not? Understanding the development of professionalism in music. In M. Radovan & N. Dordević (Eds.), Current issues in adult learning and motivation (pp. 222–235). Ljubljana: Slovenian Institute for Adult Education. Gruber, H., Lehtinen, E., Palonen, T., & Degner, S. (2008). Persons in the shadow: Assessing the social context of high abilities. Psychology Science Quarterly, 50, 237–258. Hannula, M. M., Räsänen, P., & Lehtinen, E. (2007). Development of counting skills: Contributions from tendency to focus on numerosity and subitizing. Mathematical Thinking and Learning, 9, 51–57. Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15, 237–256. Hannula, M. M., Lepola, J., & Lehtinen, E. (2010). Spontaneous focusing on numerosity as a domain-specific predictor of arithmetical skills. Journal for Experimental Child Psychology, 107, 394–406. Hannula, M. M., Mattinen, A., & Lehtinen, E. (2005). Does social interaction influence 3-year-old children’s tendency to focus on numerosity? A quasi-experimental study in day-care. In L. Verschaffel, E. De Corte, G. Kanselaar & M. Valcke (Eds.), Powerful learning environments for promoting deep conceptual and strategic learning. Studia Paedagogica, 41 (pp. 63–80). Leuven: Leuven University Press. Hannula-Sormunen, M. M. (2015). Spontaneous focusing on numerosity and its relation to counting and arithmetic. In A. Dowker & R. Cohen Kadosh (Eds.), Oxford handbook of mathematical cognition (pp. 275–290). Croydon: Oxford University Press. Hannula-Sormunen, M. M., Lehtinen, E., & Räsänen, P. (2015). Preschool children’s spontaneous focusing on numerosity, subitizing and counting skills as predictors of their mathematical performance 7 years later at school a. Mathematical Thinking and Learning, 17, 155–177. Hiebert, J., & LeFevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Hillsdale: Erlbaum. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31. Kucian, K., Kohn, J., Hannula-Sormunen, M. M., Richtmann, V., Grond, U., Käser, T., Esser, G., & von Aster, M. (2012). Kinder mit Dyskalkulie fokussieren spontan weniger auf Anzahligkeit. Lernen und Lernstörungen, 1, 241–253. doi:10.1024/2235-0977/a000024. Lampert, M. (2010). Learning teaching in, from, and for practice: What do we mean? Journal of Teacher Education, 61, 21–34. Lehmann, A. C. (1997). Acquisition of expertise in music: Efficiency of deliberate practice as a moderating variable in accounting for sub-expert performance. In I. Deliège & J. Sloboda (Eds.), Perception and cognition of music (pp. 165–190). London: Psychology Press. Lehmann, A. C. (2002). Effort and enjoyment in deliberate practice: A research note. In I. M. Hanken, S. G. Nielsen & M. Nerland (Eds.), Research in and for music education. Festschrift for Harald Jørgensen (pp. 153–166). Oslo: Norwegian Academy of Music. Lehmann, A. C., & Ericsson, K. A. (2003). Expertise. In L. Nadel (Ed.), Encyclopedia of cognitive science Vol. 2 (pp. 79–85). London: Macmillan. Lehmann, A. C., & Gruber, H. (2014). Zielgerichtete Übung und Begabung. Zwanzig Jahre nach Ericsson, Krampe & Tesch-Römer (1993). In W. Gruhn & A. Seither-Preisler (Eds.), Der musikalische Mensch. Evolution, Biologie und Pädagogik musikalischer Begabung (pp. 87–107). Hildesheim: Olms. Lehmann, A. C., & Kristensen, F. (2014). “Persons in the shadow” brought to light: Parents, teachers, and mentors. How guidance works in the acquisition of musical skills. Talent Development & Excellence, 6, 57–70. Lehtinen, E., Brezovszky, B., Rodriguez-Afleht, G., Lehtinen, H., Hannula-Sormunen, M. M., McMullen, J., Pongsakdi, N., & Veermans, K. (2015). Number Navigation Game (NNG): Game description and design principles. In J. Torbeyns, E. Lehtinen & J. Elen (Eds.), Describing and studying domain-specific serious games (pp. 45–61). New York: Springer. Lehtinen, E., & Hannula, M. M. (2006). Attentional processes, abstraction and transfer in early mathematical development. In L. Verschaffel, F. Dochy, M. Boekaerts, & S. Vosniadou (Eds.), Instructional psychology: Past, present and future trends. Fifteen essays in honour of Erik De Corte (pp. 39–54). Kidlington: Elsevier. (Advances in Learning and Instruction Series). Lehtinen, E., Hannula-Sormunen, M., McMullen, J., Brezovszky, B. & Jaatinen, M. (2016). Enhancing primary school students’ adaptive number knowledge with a computer game. Paper to be presented in the 2017 Biennial Meeting of the Society for Research in Child Development. Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational research and practice. Educational Psychologist, 47(3), 1–16. Macnamara, B. N., Hambrick, D. Z., & Oswald, F. L. (2014). Deliberate practice and performance in music, games, sports, education, and professions: A meta-analysis. Psychological Science, 25, 1608–1618. doi:10.1177/0956797614535810. Macnamara, B. N., Moreau, D., & Hambrick, D. Z. (2016). The relationship between deliberate practice and performance in sports: A meta-analysis. Perspectives on Psychological Science, 11, 333–350. doi:10.1177/1745691616635591. Mattinen, A. (2006). Huomio lukumääriin: Tutkimus 3-vuotiaiden lasten matemaattisten taitojen tukemisesta päiväkodissa [Focus on numerosities: A study on supporting 3 year-old children’s mathematical development in day care]. Turku: Painosalama. McGaghie, W. C., Issenberg, S. B., Cohen, E. R., Barsuk, J. H., & Wayne, D. B. (2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Academic Medicine, 86, 706–711. McMullen, J., Brezovszky, B., Rodríguez-Afleht, G., Pongsakdi, N., Hannula-Sormunen, M. M., & Lehtinen, E. (2016a). Adaptive number knowledge: Exploring the foundations of adaptivity with whole-number arithmetic. Learning and Individual Differences, 47, 172–181. McMullen, J., Brezovszky, B., Hannula-Sormunen, M., Veermans, K., Rodríguez-Aflechta, G., Pongsakdi, N., & Lehtinen, E. (2017). Adaptive number knowledge and its relation to arithmetic and pre-algebra knowledge. Learning and Instruction, 49, 178–187. doi:10.1016/j.learninstruc.2017.02.001. McMullen, J., Hannula-Sormunen, M. & Lehtinen, E. (submitted). Spontaneous focusing on quantitative relations as a predictor of rational number and algebra knowledge. McMullen, J., Hannula-Sormunen, M. M., Laakkonen, E., & Lehtinen, E. (2016b). Spontaneous focusing on quantitative relations as a predictor of the development of rational number conceptual knowledge. Journal of Educational Psychology, 108, 857–868. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2013). Young children’s recognition of quantitative relations in mathematically unspecified settings. Journal of Mathematical Behavior, 32, 450–460. McMullen, J., Hannula-Sormunen, M. M., & Lehtinen, E. (2014). Spontaneous focusing on quantitative relations in relation to children’s mathematical skills. Cognition and Instruction, 32, 198–218. doi:10.1080/07370008.2014.887085. Offner, C. D. (1978). Back-to-basics in mathematics: An educational fraud. The Mathematics Teacher, 71, 211–217. Pachman, M., Sweller, J., & Kalyuga, S. (2013). Levels of knowledge and deliberate practice. Journal of Experimental Psychology: Applied, 19, 108–119. doi:10.1037/a0032149. Pachman, M., Sweller, J., & Kalyuga, S. (2014). Effectiveness of combining worked examples and deliberate practice for high school geometry. Applied Cognitive Psychology, 28, 685–692. doi:10.1002/acp.3054. Plant, E. A., Ericsson, K. A., Hill, L., & Asberg, K. (2005). Why study time does not predict grade point average across college students: Implications of deliberate practice for academic performance. Contemporary Educational Psychology, 30, 96–116. Rahkamo, S. (2016). The road to exceptional expertise–A case study of the collective creativity of five Finnish multiple Olympic gold medalists. Espoo: Aalto University publication series doctoral dissertations, 257/2016. Rathé, S., Torbeyns, J., Hannula-Sormunen, M. M., De Smedt, B., & Verschaffel, L. (2016a). Spontaneous focusing on numerosity: a review of recent research. Mediterranean Journal for Research in Mathematics Education, 18, 125–141. doi:10.1080/10986065.2016.1148531. Rathé, S., Torbeyns, J., Hannula-Sormunen, M. M., & Verschaffel, L. (2016b). Kindergartners’ spontaneous focusing on numerosity in relation to their number-related utterances during numerical picture book reading. Mathematical Thinking and Learning, 18, 125–141. doi:10.1080/10986065.2016.1148531. Redshaw, J., & Suddendorf, T. (2013). Foresight beyond the very next event: Four-year-olds can link past and deferred future episodes. Frontiers in Psychology, 4, 404. Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge in mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1102–1118). Oxford: Oxford University Press. doi:10.1093/oxfordhb. Rittle-Johnson, B., Schneider, M., & Star, J. (2015). Not a one-way street: Bi-directional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27, 587–597. doi:10.1007/s10648-015-9302-x. Sakakibara, A. (2014). A longitudinal study of the process of acquiring absolute pitch: A practical report of training with the ‘chord identification method’. Psychology of Music, 42, 86–111. doi:10.1177/0305735612463948. Sella, F., Berteletti, I., Lucangeli, D., & Zorzi, M. (2016). Spontaneous non-verbal counting in toddlers. Developmental Science, 19, 329–337. Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404–411. Suddendorf, T., Brinums, M., & Imuta, K. (2016). Shaping one’s future self. The development of deliberate practice. In S. B. Klein, K. Michaelian & K. K. Szpunar (Eds.), Seeing the future: Theoretical perspectives on future-oriented mental time travel (pp. 343–366). London: Oxford University Press. Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50(1), 29–47. Threlfall, J. (2009). Strategies and flexibility in mental calculation. ZDM–The International Journal on Mathematics Education, 41, 541–555. doi:10.1007/s11858-009-0195-3. Tournaki, N. (2003). The differential effects of teaching addition through strategy instruction versus drill and practice to students with and without learning disabilities. Journal of Learning Disabilities, 36, 449–458. Van den Heuvel-Panhuizen, M., Elia, I., & Robitzsch, A. (2014). Effects of reading picture books on kindergartners’ mathematics performance. Educational Psychology, 1–24. doi:10.1080/01443410.2014.963029. Van Gog, T., Ericsson, K. A., Rikers, R. M., & Paas, F. (2005). Instructional design for advanced learners: Establishing connections between the theoretical frameworks of cognitive load and deliberate practice. Education Technology Research and Development, 53(3), 73–81. Van Hoof, J., Degrande, T., McMullen, J., Hannula-Sormunen, M., Lehtinen, E., Verschaffel, L., & Van Dooren, W. (2016). The relation between learners’ spontaneous focusing on quantitative relations and their rational number knowledge. Studia Psychologica, 58(2), 156–170. Verschaffel, L., & Greer, B. (2013). Domain-specific strategies and models: Mathematics education. In J. M. Spector, M. D. Merrill, J. Elen & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (fourth edition) (pp. 553–563). New York: Springer Academic. Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335–359. doi:10.1002/cbdv.200490137. Wheatley, G. H. (1991). Constructivist perspectives of science and mathematics learning. Science Education, 75, 9–21. Wittmann, E. Ch. (2011). Vom Zählen über das “rechnende Zählen” zum “denkenden Rechnen“–mathematisch fundiert. Grundschulzeitschrift 248/249, 52–55.