DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation

Springer Science and Business Media LLC - Tập 14 - Trang 1-14 - 2013
Radhika Das1, Yew Kok Lee1, Ruslan Strogantsev2, Shengnan Jin1, Yen Ching Lim1, Poh Yong Ng1, Xueqin Michelle Lin1, Keefe Chng1, George SH Yeo3, Anne C Ferguson-Smith2, Chunming Ding1
1Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, (A*STAR), Singapore, Singapore
2Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
3Department of Maternal Fetal Medicine, K.K. Women’s and Children’s Hospital, Singapore, Singapore

Tóm tắt

Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development.

Tài liệu tham khảo

Bartolomei MS, Ferguson-Smith AC: Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 2011, 3 (7): 1-15. Reik W, Walter J: Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet. 2001, 27 (3): 255-256. 10.1038/85804. Okamura K, Ito T: Lessons from comparative analysis of species-specific imprinted genes. Cytogenet Genome Res. 2006, 113 (1–4): 159-164. Prickett AR, Oakey RJ: A survey of tissue-specific genomic imprinting in mammals. Mol Genet Genomics. 2012, 287 (8): 621-630. 10.1007/s00438-012-0708-6. Das R, Hampton DD, Jirtle RL: Imprinting evolution and human health. Mamm Genome. 2009, 20 (9–10): 563-572. John RM, Lefebvre L: Developmental regulation of somatic imprints. Differentiation. 2011, 81 (5): 270-280. 10.1016/j.diff.2011.01.007. Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W: Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet. 2004, 36 (12): 1291-1295. 10.1038/ng1468. Morcos L, Ge B, Koka V, Lam KC, Pokholok DK, Gunderson KL, Montpetit A, Verlaan DJ, Pastinen T: Genome-wide assessment of imprinted expression in human cells. Genome Biol. 2011, 12 (3): R25-10.1186/gb-2011-12-3-r25. Brideau CM, Eilertson KE, Hagarman JA, Bustamante CD, Soloway PD: Successful computational prediction of novel imprinted genes from epigenomic features. Mol Cell Biol. 2010, 30 (13): 3357-3370. 10.1128/MCB.01355-09. Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ: Computational and experimental identification of novel human imprinted genes. Genome Res. 2007, 17 (12): 1723-1730. 10.1101/gr.6584707. Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB, Feinberg AP: A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 2002, 12 (4): 543-554. Ishino F, Kuroiwa Y, Miyoshi N, Kobayashi S, Kohda T, Kaneko-Ishino T: Subtraction-hybridization method for the identification of imprinted genes. Methods Mol Biol. 2001, 181: 101-112. Pollard KS, Serre D, Wang X, Tao H, Grundberg E, Hudson TJ, Clark AG, Frazer K: A genome-wide approach to identifying novel-imprinted genes. Hum Genet. 2008, 122 (6): 625-634. 10.1007/s00439-007-0440-1. Schulz R, Menheniott TR, Woodfine K, Wood AJ, Choi JD, Oakey RJ: Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies. Nucleic Acids Res. 2006, 34 (12): e88-10.1093/nar/gkl461. Smith RJ, Dean W, Konfortova G, Kelsey G: Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res. 2003, 13 (4): 558-569. 10.1101/gr.781503. Wen B, Wu H, Bjornsson H, Green RD, Irizarry R, Feinberg AP: Overlapping euchromatin/heterochromatin- associated marks are enriched in imprinted gene regions and predict allele-specific modification. Genome Res. 2008, 18 (11): 1806-1813. 10.1101/gr.067587.108. Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG: A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 2011, 21 (3): 465-476. 10.1101/gr.111922.110. Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T: Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet. 2011, 2011: 2011- Nakabayashi K, Trujillo AM, Tayama C, Camprubi C, Yoshida W, Lapunzina P, Sanchez A, Soejima H, Aburatani H, Nagae G: Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genes. Hum Mol Genet. 2011, 20 (16): 3188-3197. 10.1093/hmg/ddr224. Babak T, Deveale B, Armour C, Raymond C, Cleary MA, van der Kooy D, Johnson JM, Lim LP: Global survey of genomic imprinting by transcriptome sequencing. Curr Biol. 2008, 18 (22): 1735-1741. 10.1016/j.cub.2008.09.044. Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny MB, Pinard A, Auer J, Bessieres B, Barlier A: A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetic. 2012, 7 (9): 1079-1090. 10.4161/epi.21495. Proudhon C, Duffie R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK: Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell. 2012, 47 (6): 909-920. 10.1016/j.molcel.2012.07.010. Wang X, Soloway PD, Clark AG: A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics. 2011, 189 (1): 109-122. 10.1534/genetics.111.130088. Gregg C, Zhang J, Butler JE, Haig D, Dulac C: Sex-specific parent-of-origin allelic expression in the mouse brain. Science. 2010, 329 (5992): 682-685. 10.1126/science.1190831. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C: High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science. 2010, 329 (5992): 643-648. 10.1126/science.1190830. DeVeale B, van der Kooy D, Babak T: Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet. 2012, 8 (3): e1002600-10.1371/journal.pgen.1002600. Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B: Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012, 148 (4): 816-831. 10.1016/j.cell.2011.12.035. Bressan FF, De Bem TH, Perecin F, Lopes FL, Ambrosio CE, Meirelles FV, Miglino MA: Unearthing the roles of imprinted genes in the placenta. Placenta. 2009, 30 (10): 823-834. 10.1016/j.placenta.2009.07.007. Constancia M, Kelsey G, Reik W: Resourceful imprinting. Nature. 2004, 432 (7013): 53-57. 10.1038/432053a. Fowden AL, Sibley C, Reik W, Constancia M: Imprinted genes, placental development and fetal growth. Horm Res. 2006, 65 (Suppl 3): 50-58. Frost JM, Moore GE: The importance of imprinting in the human placenta. PLoS Genet. 2010, 6 (7): e1001015-10.1371/journal.pgen.1001015. Goshen R, Ben-Rafael Z, Gonik B, Lustig O, Tannos V, de Groot N, Hochberg AA: The role of genomic imprinting in implantation. Fertil Steril. 1994, 62 (5): 903-910. Pliushch G, Schneider E, Weise D, El Hajj N, Tresch A, Seidmann L, Coerdt W, Muller AM, Zechner U, Haaf T: Extreme methylation values of imprinted genes in human abortions and stillbirths. Am J Pathol. 2010, 176 (3): 1084-1090. 10.2353/ajpath.2010.090764. Uuskula L, Rull K, Nagirnaja L, Laan M: Methylation allelic polymorphism (MAP) in chorionic gonadotropin beta5 (CGB5) and its association with pregnancy success. J Clin Endocrinol Metab. 2011, 96 (1): E199-E207. 10.1210/jc.2010-1647. Yuen RK, Avila L, Penaherrera MS, von Dadelszen P, Lefebvre L, Kobor MS, Robinson WP: Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS One. 2009, 4 (10): e7389-10.1371/journal.pone.0007389. Daelemans C, Ritchie ME, Smits G, Abu-Amero S, Sudbery IM, Forrest MS, Campino S, Clark TG, Stanier P, Kwiatkowski D: High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet. 2010, 11: 25- Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, Cavaille J: The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010, 19 (18): 3566-3582. 10.1093/hmg/ddq272. Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE: Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A. 2006, 103 (17): 6623-6628. 10.1073/pnas.0511031103. Lefebvre L: The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage. Reprod Biomed Online. 2012, 25 (1): 44-57. 10.1016/j.rbmo.2012.03.019. Hudson QJ, Seidl CI, Kulinski TM, Huang R, Warczok KE, Bittner R, Bartolomei MS, Barlow DP: Extra-embryonic-specific imprinted expression is restricted to defined lineages in the post-implantation embryo. Dev Biol. 2011, 353 (2): 420-431. 10.1016/j.ydbio.2011.02.017. Proudhon C, Bourc'his D: Identification and resolution of artifacts in the interpretation of imprinted gene expression. Brief Funct Genomics. 2010, 9 (5–6): 374-384. Arima T, Yamasaki K, John RM, Kato K, Sakumi K, Nakabeppu Y, Wake N, Kono T: The human HYMAI/PLAGL1 differentially methylated region acts as an imprint control region in mice. Genomics. 2006, 88 (5): 650-658. 10.1016/j.ygeno.2006.07.005. Riesewijk AM, Xu YQ, Schepens MT, Mariman EM, Polychronakos C, Ropers HH, Kalscheuer VM: Absence of an obvious molecular imprinting mechanism in a human fetus with monoallelic IGF2R expression. Biochem Biophys Res Commun. 1998, 245 (1): 272-277. 10.1006/bbrc.1998.8414. Arnaud P, Monk D, Hitchins M, Gordon E, Dean W, Beechey CV, Peters J, Craigen W, Preece M, Stanier P: Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum Mol Genet. 2003, 12 (9): 1005-1019. 10.1093/hmg/ddg110. Monk D, Wagschal A, Arnaud P, Muller PS, Parker-Katiraee L, Bourc'his D, Scherer SW, Feil R, Stanier P, Moore GE: Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res. 2008, 18 (8): 1270-1281. 10.1101/gr.077115.108. Riesewijk AM, Hu L, Schulz U, Tariverdian G, Hoglund P, Kere J, Ropers HH, Kalscheuer VM: Monoallelic expression of human PEG1/MEST is paralleled by parent-specific methylation in fetuses. Genomics. 1997, 42 (2): 236-244. 10.1006/geno.1997.4731. Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Paldi A, Jouannet P, Jeanpierre M: Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 2000, 9 (14): 2183-2187. 10.1093/hmg/9.14.2183. Du M, Beatty LG, Zhou W, Lew J, Schoenherr C, Weksberg R, Sadowski PD: Insulator and silencer sequences in the imprinted region of human chromosome 11p15.5. Hum Mol Genet. 2003, 12 (15): 1927-1939. 10.1093/hmg/ddg194. Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, Yamamori S, Kishimoto H, Nakayama M, Tanaka Y: Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet. 2008, 40 (2): 237-242. 10.1038/ng.2007.56. El-Maarri O, Buiting K, Peery EG, Kroisel PM, Balaban B, Wagner K, Urman B, Heyd J, Lich C, Brannan CI: Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet. 2001, 27 (3): 341-344. 10.1038/85927. Huang JM, Kim J: DNA methylation analysis of the mammalian PEG3 imprinted domain. Gene. 2009, 442 (1–2): 18-25. Evans HK, Wylie AA, Murphy SK, Jirtle RL: The neuronatin gene resides in a “micro-imprinted” domain on human chromosome 20q11.2. Genomics. 2001, 77 (1–2): 99-104. Li J, Bench AJ, Vassiliou GS, Fourouclas N, Ferguson-Smith AC, Green AR: Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci USA. 2004, 101 (19): 7341-7346. 10.1073/pnas.0308195101. Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS: A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest. 2000, 106 (9): 1167-1174. 10.1172/JCI10431. Liu J, Nealon JG, Weinstein LS: Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum Mol Genet. 2005, 14 (1): 95-102. Kanber D, Berulava T, Ammerpohl O, Mitter D, Richter J, Siebert R, Horsthemke B, Lohmann D, Buiting K: The human retinoblastoma gene is imprinted. PLoS Genet. 2009, 5 (12): e1000790-10.1371/journal.pgen.1000790. Monk D, Arnaud P, Frost JM, Wood AJ, Cowley M, Martin-Trujillo A, Guillaumet-Adkins A, Iglesias Platas I, Camprubi C, Bourc'his D: Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes. Nucleic Acids Res. 2011, 39 (11): 4577-4586. 10.1093/nar/gkq1230. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM: A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008, 26 (7): 779-785. 10.1038/nbt1414. Mikeska T, Candiloro IL, Dobrovic A: The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics. 2010, 2 (4): 561-573. 10.2217/epi.10.32. Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD: Genomic landscape of human allele-specific DNA methylation. Proc Natl Acad Sci U S A. 2012, 109 (19): 7332-7337. 10.1073/pnas.1201310109. Peng Q, Ecker JR: Detection of allele-specific methylation through a generalized heterogeneous epigenome model. Bioinformatics. 2012, 28 (12): i163-i171. 10.1093/bioinformatics/bts231. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA: DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature. 2010, 463 (7280): 563-567. 10.1038/nature08683. Novakovic B, Wong NC, Sibson M, Ng HK, Morley R, Manuelpillai U, Down T, Rakyan VK, Beck S, Hiendleder S: DNA methylation-mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta. J Biol Chem. 2010, 285 (13): 9583-9593. 10.1074/jbc.M109.064956. Yuen RK, Jiang R, Penaherrera MS, McFadden DE, Robinson WP: Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin. 2011, 4 (1): 10-10.1186/1756-8935-4-10. Ko YG, Nishino K, Hattori N, Arai Y, Tanaka S, Shiota K: Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J Biol Chem. 2005, 280 (10): 9627-9634. Borowczyk E, Mohan KN, D'Aiuto L, Cirio MC, Chaillet JR: Identification of a region of the DNMT1 methyltransferase that regulates the maintenance of genomic imprints. Proc Natl Acad Sci U S A. 2009, 106 (49): 20806-20811. 10.1073/pnas.0905668106. Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H, Asano T, Kurihara H: Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev Biol. 2008, 313 (1): 335-346. 10.1016/j.ydbio.2007.10.033. Novakovic B, Saffery R: The ever growing complexity of placental epigenetics - role in adverse pregnancy outcomes and fetal programming. Placenta. 2012, 33 (12): 959-970. 10.1016/j.placenta.2012.10.003. Aravind P, Wistow G, Sharma Y, Sankaranarayanan R: Exploring the limits of sequence and structure in a variant betagamma-crystallin domain of the protein absent in melanoma-1 (AIM1). J Mol Biol. 2008, 381 (3): 509-518. 10.1016/j.jmb.2008.06.019. Ray ME, Wistow G, Su YA, Meltzer PS, Trent JM: AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Proc Natl Acad Sci U S A. 1997, 94 (7): 3229-3234. 10.1073/pnas.94.7.3229. Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, Klinkebiel D, Christman JK, Patel K, Cao K: Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009, 23 (6): 1139-1151. 10.1038/leu.2009.3. Handwerger S, Aronow B: Dynamic changes in gene expression during human trophoblast differentiation. Recent Prog Horm Res. 2003, 58: 263-281. 10.1210/rp.58.1.263. Killian JK, Nolan CM, Wylie AA, Li T, Vu TH, Hoffman AR, Jirtle RL: Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet. 2001, 10 (17): 1721-1728. 10.1093/hmg/10.17.1721. Lambertini L, Diplas AI, Lee MJ, Sperling R, Chen J, Wetmur J: A sensitive functional assay reveals frequent loss of genomic imprinting in human placenta. Epigenetics. 2008, 3 (5): 261-269. 10.4161/epi.3.5.6755. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011, 479 (7371): 74-79. 10.1038/nature10442. Aran D, Toperoff G, Rosenberg M, Hellman A: Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011, 20 (4): 670-680. 10.1093/hmg/ddq513. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10 (3): R25-10.1186/gb-2009-10-3-r25. Chim SS, Jin S, Lee TY, Lun FM, Lee WS, Chan LY, Jin Y, Yang N, Tong YK, Leung TY: Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21. Clin Chem. 2008, 54 (3): 500-511. 10.1373/clinchem.2007.098731.