Magnetic Domain-Wall Logic

American Association for the Advancement of Science (AAAS) - Tập 309 Số 5741 - Trang 1688-1692 - 2005
D. A. Allwood1,2,3,4, Gang Xiong1,2,3,4, Colm C. Faulkner1,2,3,4, D. Atkinson1,2,3,4, D. Petit1,2,3,4, R. P. Cowburn1,2,3,4
1Blackett Physics Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW, UK.
2Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Portobello Street, Sheffield S1 3JD, UK
3Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
4Durham Magneto Optics Ltd., The University of Durham, Durham DH1 3HP, UK.

Tóm tắt

“Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics. A complete logic architecture can be constructed, which uses planar magnetic wires that are less than a micrometer in width. Logical NOT, logical AND, signal fan-out, and signal cross-over elements each have a simple geometric design, and they can be integrated together into one circuit. An additional element for data input allows information to be written to domain-wall logic circuits.

Từ khóa


Tài liệu tham khảo

10.1126/science.282.5394.1660

10.1126/science.1065389

10.1126/science.287.5455.1019

10.1038/45509

M. N. Baibich et al., Phys. Rev. Lett.61, 2472 (1988).

G. Grynkenich et al., MRS Bull.29, 818 (2004).

10.1016/0304-8853(96)00062-5

10.1103/PhysRevB.54.9353

10.1103/PhysRevLett.84.3149

10.1038/nature01967

10.1103/PhysRevLett.92.027201

10.1126/science.287.5457.1466

G. Csaba, W. Porod, A. I. Csurgay, Int. J. Circ. Theor. Appl.31, 67 (2003).

A. Imre, G. Csaba, V. Metlushko, G. H. Bernstein, W. Porod, Physica E (Amsterdam)19, 240 (2003).

10.1126/science.284.5412.289

G. Reiss et al., Phys. Status Soldi201, 1628 (2004).

10.1038/nature02014

R. Richter et al., Solid State Electron.46, 639 (2002).

Z. Navabi Digital Design and Implementation with Field Programmable Devices (Kluwer Academic Publishers Dordrecht Netherlands 2005).

W. C. Black, B. Das, J. Appl. Phys.87, 6674 (2000).

R. D. McMichael, M. J. Donahue, IEEE Trans. Magn.33, 4167 (1997).

10.1126/science.284.5413.468

D. Atkinson et al., Nat. Mater.2, 85 (2003).

10.1126/science.1070595

All structures presented here are fabricated from thermally evaporated 5-nm-thick Permalloy films by focused ion beam milling ( 24 ).

D. A. Allwood et al., J. Appl. Phys.95, 8264 (2004).

D. A. Allwood, G. Xiong, M. D. Cooke, R. P. Cowburn, J. Phys. D36, 2175 (2003).

The high-sensitivity MOKE magnetometer ( 24 26 ) was used with at least 1 min of signal averaging and a field rotation frequency of 27 Hz. The magnetometer can be used to select regions of complex magnetic nanowire networks for analysis with ∼5 μm spatial resolution.

C. C. Faulkner et al., IEEE Trans. Magn.39, 2860 (2003).

D. A. Allwood et al., Appl. Phys. Lett.81, 4005 (2002).

A. Himeno et al., J. Appl. Phys.93, 8430 (2003).

D. Atkinson, R. P. Cowburn, J. Magn. Magn. Mater.290-291, 165 (2005).

Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater.2, 521 (2003).

10.1126/science.1086608

R. Waser, Ed., Nanoelectronics and Information Technology (Wiley VCH, Weinheim, Germany, 2003), p. 330.

M. Tsoi, R. E. Fontana, S. S. P. Parkin, Appl. Phys. Lett.83, 2617 (2003).

C. K. Lim et al., Appl. Phys. Lett.84, 2820 (2004).

10.1209/epl/i2003-10112-5

R. P. Cowburn, J. Appl. Phys.93, 9310 (2003).

This work was supported by Ingenia Holdings Ltd. D.A.A. and D.A. acknowledge the Engineering and Physical Sciences Research Council for Advanced Research Fellowship nos. GR/T02942/01 and GR/S51288/01 respectively. The work and results reported in this publication were obtained with research funding from the European Community under the Sixth Framework Programme Contract Number 510993: MAGLOG. The views expressed are solely those of the authors and the other Contractors and/or the European Community cannot be held liable for any use that may be made of the information contained herein.