Loss of microRNA-21 protects against acetaminophen-induced hepatotoxicity in mice

Fühner-Wieland's Sammlung von Vergiftungsfällen - Tập 97 - Trang 1907-1925 - 2023
Alexandra M. Huffman1,2,3,4, Maryam Syed1,2,3,4, Samar Rezq1,2,3,4,5, Christopher D. Anderson6, Licy L. Yanes Cardozo1,7,2,3,4, Damian G. Romero1,2,3,4
1Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, USA
2Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, USA
3Women’s Health Research Center, University of Mississippi Medical Center, Jackson, USA
4Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, USA
5Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
6Department of Surgery, University of Mississippi Medical Center, Jackson, USA
7Department of Medicine, University of Mississippi Medical Center, Jackson, USA

Tóm tắt

Acetaminophen (APAP)-induced Acute Liver Failure (ALF) is recognized as the most common cause of ALF in Western societies. APAP-induced ALF is characterized by coagulopathy, hepatic encephalopathy, multi-organ failure, and death. MicroRNAs are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MicroRNA-21 (miR-21) is dynamically expressed in the liver and is involved in the pathophysiology of both acute and chronic liver injury models. We hypothesize that miR-21genetic ablation attenuates hepatotoxicity following acetaminophen intoxication. Eight-week old miR-21knockout (miR21KO) or wild-type (WT) C57BL/6N male mice were injected with acetaminophen (APAP, 300 mg/kg BW) or saline. Mice were sacrificed 6 or 24 h post-injection. MiR21KO mice presented attenuation of liver enzymes ALT, AST, LDH compared with WT mice 24 h post-APAP treatment. Moreover, miR21KO mice had decreased hepatic DNA fragmentation and necrosis than WT mice after 24 h of APAP treatment. APAP-treated miR21KO mice showed increased levels of cell cycle regulators CYCLIN D1 and PCNA, increased autophagy markers expression (Map1LC3a, Sqstm1) and protein (LC3AB II/I, p62), and an attenuation of the APAP-induced hypofibrinolytic state via (PAI-1) compared with WT mice 24 post-APAP treatment. MiR-21 inhibition could be a novel therapeutic approach to mitigate APAP-induced hepatotoxicity and enhance survival during the regenerative phase, particularly to alter regeneration, autophagy, and fibrinolysis. Specifically, miR-21 inhibition could be particularly useful when APAP intoxication is detected at its late stages and the only available therapy is minimally effective.

Tài liệu tham khảo

Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL (2019) Understanding the marvels behind liver regeneration. Wiley Interdiscip Rev Dev Biol 8(3):e340. https://doi.org/10.1002/wdev.340 Adams ML, Pierce RH, Vail ME et al (2001) Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2. Mol Pharmacol 60(5):907–915. https://doi.org/10.1124/mol.60.5.907 Androsavich JR, Chau BN, Bhat B, Linsley PS, Walter NG (2012) Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver. RNA 18(8):1510–1526. https://doi.org/10.1261/rna.033308.112 Apte U, Singh S, Zeng G et al (2009) Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am J Pathol 175(3):1056–1065. https://doi.org/10.2353/ajpath.2009.080976 Ardite E, Perdiguero E, Vidal B, Gutarra S, Serrano AL, Munoz-Canoves P (2012) PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol 196(1):163–175. https://doi.org/10.1083/jcb.201105013 Bajt ML, Yan HM, Farhood A, Jaeschke H (2008) Plasminogen activator inhibitor-1 limits liver injury and facilitates regeneration after acetaminophen overdose. Toxicol Sci 104(2):419–427. https://doi.org/10.1093/toxsci/kfn091 Ball JP, Syed M, Maranon RO et al (2017) Role and regulation of microRNAs in aldosterone-mediated cardiac injury and dysfunction in male rats. Endocrinology 158(6):1859–1874. https://doi.org/10.1210/en.2016-1707 Beier JI, Arteel GE (2012) Alcoholic liver disease and the potential role of plasminogen activator inhibitor-1 and fibrin metabolism. Exp Biol Med 237(1):1–9. https://doi.org/10.1258/ebm.2011.011255 Bhushan B, Apte U (2019) Liver regeneration after acetaminophen hepatotoxicity: mechanisms and therapeutic opportunities. Am J Pathol 189(4):719–729. https://doi.org/10.1016/j.ajpath.2018.12.006 Bhushan B, Walesky C, Manley M et al (2014) Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am J Pathol 184(11):3013–3025. https://doi.org/10.1016/j.ajpath.2014.07.019 Bird TG, Muller M, Boulter L et al (2018) TGFbeta inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan1230 Carreiro S, Marvel-Coen J, Lee R, Chapman B, Ambros V (2019) Circulating microRNA profiles in acetaminophen toxicity. J Med Toxicol 16(2):177–187. https://doi.org/10.1007/s13181-019-00739-6 Chao X, Wang H, Jaeschke H, Ding WX (2018) Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int 38(8):1363–1374. https://doi.org/10.1111/liv.13866 Clarke AJ, Simon AK (2018) Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 19(3):170–183. https://doi.org/10.1038/s41577-018-0095-2 Cover C, Mansouri A, Knight TR et al (2005) Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 315(2):879–887. https://doi.org/10.1124/jpet.105.088898 Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61. https://doi.org/10.1038/nature07086 Deretic V (2011) Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240(1):92–104. https://doi.org/10.1111/j.1600-065X.2010.00995.x Dippold RP, Vadigepalli R, Gonye GE, Hoek JB (2012) Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am J Physiol Gastrointest Liver Physiol 303(6):G733–G743. https://doi.org/10.1152/ajpgi.00019.2012 Du X, Wu M, Tian D, Zhou J, Wang L, Zhan L (2020) MicroRNA-21 contributes to acute liver injury in LPS-induced sepsis mice by inhibiting PPARalpha expression. PPAR Res 2020:6633022. https://doi.org/10.1155/2020/6633022 Duan L, Davis JS, Woolbright BL et al (2016) Differential susceptibility to acetaminophen-induced liver injury in sub-strains of C57BL/6 mice: 6N versus 6J. Food Chem Toxicol 98(Pt B):107–118. https://doi.org/10.1016/j.fct.2016.10.021 Fu X, Han Y, Wu Y et al (2011) Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest 41(11):1245–1253. https://doi.org/10.1111/j.1365-2362.2011.02535.x Fukushima T, Uchiyama S, Tanaka H, Kataoka H (2018) Hepatocyte growth factor activator: a proteinase linking tissue injury with repair. Int J Mol Sci. https://doi.org/10.3390/ijms19113435 Ganey PE, Luyendyk JP, Newport SW et al (2007) Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology 46(4):1177–1186. https://doi.org/10.1002/hep.21779 Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840. https://doi.org/10.1038/nature09267 Han L, Yue X, Zhou X et al (2012) MicroRNA-21 expression is regulated by beta-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther 18(7):573–583. https://doi.org/10.1111/j.1755-5949.2012.00344.x Herndon CM, Dankenbring DM (2014) Patient perception and knowledge of acetaminophen in a large family medicine service. J Pain Palliat Care Pharmacother 28(2):109–116. https://doi.org/10.3109/15360288.2014.908993 Huang CK, Bar C, Thum T (2020) miR-21, mediator, and potential therapeutic target in the cardiorenal syndrome. Front Pharmacol 11:726. https://doi.org/10.3389/fphar.2020.00726 Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. https://doi.org/10.1038/nrg2936 Jaeschke H (2019) Emerging novel therapies against paracetamol (acetaminophen) hepatotoxicity. EBioMedicine 46:9–10. https://doi.org/10.1016/j.ebiom.2019.07.054 Jaeschke H, Xie Y, McGill MR (2014) Acetaminophen-induced liver injury: from animal models to humans. J Clin Transl Hepatol 2(3):153–161. https://doi.org/10.14218/JCTH.2014.00014 Jaeschke H, Duan L, Akakpo JY, Farhood A, Ramachandran A (2018) The role of apoptosis in acetaminophen hepatotoxicity. Food Chem Toxicol 118:709–718. https://doi.org/10.1016/j.fct.2018.06.025 James LP, Lamps LW, McCullough S, Hinson JA (2003) Interleukin 6 and hepatocyte regeneration in acetaminophen toxicity in the mouse. Biochem Biophys Res Commun 309(4):857–863. https://doi.org/10.1016/j.bbrc.2003.08.085 John K, Hadem J, Krech T et al (2014) MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology 60(4):1346–1355. https://doi.org/10.1002/hep.27250 Jopling C (2012) Liver-specific microRNA-122: Biogenesis and function. RNA Biol 9(2):137–142. https://doi.org/10.4161/rna.18827 Juskeviciute E, Dippold RP, Antony AN, Swarup A, Vadigepalli R, Hoek JB (2016) Inhibition of miR-21 rescues liver regeneration after partial hepatectomy in ethanol-fed rats. Am J Physiol Gastrointest Liver Physiol 311(5):G794–G806. https://doi.org/10.1152/ajpgi.00292.2016 Kaushik S, Cuervo AM (2006) Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol Aspects Med 27(5–6):444–454. https://doi.org/10.1016/j.mam.2006.08.007 Kawakita A, Yanamoto S, Yamada S et al (2014) MicroRNA-21 promotes oral cancer invasion via the Wnt/beta-catenin pathway by targeting DKK2. Pathol Oncol Res 20(2):253–261. https://doi.org/10.1007/s12253-013-9689-y Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. https://doi.org/10.1038/ncb2152 Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13(1):39–53. https://doi.org/10.1111/j.1582-4934.2008.00556.x Lee WM (2017) Acetaminophen (APAP) hepatotoxicity-isn’t it time for APAP to go away? J Hepatol 67(6):1324–1331. https://doi.org/10.1016/j.jhep.2017.07.005 Li Q, Zhang D, Wang Y et al (2013) MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci Rep. https://doi.org/10.1038/srep02038 Loyer X, Paradis V, Henique C et al (2016) Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARalpha expression. Gut 65(11):1882–1894. https://doi.org/10.1136/gutjnl-2014-308883 Lu TX, Hartner J, Lim EJ et al (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187(6):3362–3373. https://doi.org/10.4049/jimmunol.1101235 Manirujjaman M, Ozaki I, Murata Y et al (2020) Degradation of the tumor suppressor PDCD4 is impaired by the suppression of p62/SQSTM1 and autophagy. Cells. https://doi.org/10.3390/cells9010218 Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298(4):G535–G541. https://doi.org/10.1152/ajpgi.00338.2009 McGill MR, Jaeschke H (2015) A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol Mech Methods 25(8):589–595. https://doi.org/10.3109/15376516.2015.1094844 McGill MR, Jaeschke H (2019) Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 1865(5):1031–1039. https://doi.org/10.1016/j.bbadis.2018.08.037 McGill MR, Lebofsky M, Norris H-RK et al (2013) Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose–response, mechanisms, and clinical implications. Toxicol Appl Pharmacol 269(3):240–249. https://doi.org/10.1016/j.taap.2013.03.026 Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300. https://doi.org/10.1002/jcp.21172 Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187(1):211–217 Morrison EE, Oatey K, Gallagher B et al (2019) Principal results of a randomised open label exploratory, safety and tolerability study with calmangafodipir in patients treated with a 12h regimen of N-acetylcysteine for paracetamol overdose (POP trial). EBioMedicine 46:423–430. https://doi.org/10.1016/j.ebiom.2019.07.013 Pant A, Kopec AK, Baker KS, Cline-Fedewa H, Lawrence DA, Luyendyk JP (2018) Plasminogen activator inhibitor-1 reduces tissue-type plasminogen activator-dependent fibrinolysis and intrahepatic hemorrhage in experimental acetaminophen overdose. Am J Pathol 188(5):1204–1212. https://doi.org/10.1016/j.ajpath.2018.01.010 Park HK, Jo W, Choi HJ et al (2016) Time-course changes in the expression levels of miR-122, -155, and -21 as markers of liver cell damage, inflammation, and regeneration in acetaminophen-induced liver injury in rats. J Vet Sci 17(1):45–51. https://doi.org/10.4142/jvs.2016.17.1.45 Peng Y, Zhang X, Feng X, Fan X, Jin Z (2017) The crosstalk between microRNAs and the Wnt/beta-catenin signaling pathway in cancer. Oncotarget 8(8):14089–14106. https://doi.org/10.18632/oncotarget.12923 Polson J, Lee WM (2005) AASLD position paper: the management of acute liver failure. Hepatology 41(5):1179–1197. https://doi.org/10.1002/hep.20703 Ramachandran A, Jaeschke H (2017) Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 3(Suppl 1):157–169. https://doi.org/10.18053/jctres.03.2017S1.002 Rodrigues PM, Afonso MB, Simao AL et al (2017) miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis 8(4):e2748. https://doi.org/10.1038/cddis.2017.172 Rumack BH, Bateman DN (2012) Acetaminophen and acetylcysteine dose and duration: past, present and future. Clin Toxicol 50(2):91–98. https://doi.org/10.3109/15563650.2012.659252 Shen Z, Wang Y, Su Z, Kou R, Xie K, Song F (2018) Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice. Chem Biol Interact 282:22–28. https://doi.org/10.1016/j.cbi.2018.01.008 Streeter AJ, Dahlin DC, Nelson SD, Baillie TA (1984) The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro. Chem Biol Interact 48(3):349–366. https://doi.org/10.1016/0009-2797(84)90145-5 Thulin P, Nordahl G, Gry M et al (2014) Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver Int 34(3):367–378. https://doi.org/10.1111/liv.12322 Tomimaru Y, Eguchi H, Nagano H et al (2012) Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol 56(1):167–175. https://doi.org/10.1016/j.jhep.2011.04.026 Torre C, Benhamouche S, Mitchell C et al (2011a) The transforming growth factor-alpha and cyclin D1 genes are direct targets of beta-catenin signaling in hepatocyte proliferation. J Hepatol 55(1):86–95. https://doi.org/10.1016/j.jhep.2010.10.021 Torre C, Perret C, Colnot S (2011b) Transcription dynamics in a physiological process: beta-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol 43(2):271–278. https://doi.org/10.1016/j.biocel.2009.11.004 van Oosten-Hawle P, Jackson Matthew P, Hewitt Eric W (2016) Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem 60(2):173–180. https://doi.org/10.1042/ebc20160005 Volinia S, Calin GA, Liu C-G et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci 103(7):2257–2261. https://doi.org/10.1073/pnas.0510565103 Wang H, Ni HM, Chao X et al (2019) Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol 22:101148. https://doi.org/10.1016/j.redox.2019.101148 Ward J, Kanchagar C, Veksler-Lublinsky I et al (2014) Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci 111(33):12169–12174. https://doi.org/10.1073/pnas.1412608111 Williams JA, Ding WX (2018) Mechanisms, pathophysiological roles and methods for analyzing mitophagy—recent insights. Biol Chem 399(2):147–178. https://doi.org/10.1515/hsz-2017-0228 Williams JA, Ni HM, Haynes A et al (2015) Chronic deletion and acute knockdown of Parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J Biol Chem 290(17):10934–10946. https://doi.org/10.1074/jbc.M114.602284 Wolf JH, Bhatti TR, Fouraschen S et al (2014) Heat shock protein 70 is required for optimal liver regeneration after partial hepatectomy in mice. Liver Transpl 20(3):376–385. https://doi.org/10.1002/lt.23813 Yang X, Salminen WF, Shi Q et al (2015) Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol Appl Pharmacol 284(2):180–187. https://doi.org/10.1016/j.taap.2015.02.013 Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N (2016) Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 4(2):131–142. https://doi.org/10.14218/JCTH.2015.00052 Zhang T, Yang Z, Kusumanchi P, Han S, Liangpunsakul S (2020) Critical role of microRNA-21 in the pathogenesis of liver diseases. Front Med 7:7. https://doi.org/10.3389/fmed.2020.00007 Zhang C, Kang L, Zhu H, Li J, Fang R (2021) miRNA-338–3p/CAMK IIalpha signaling pathway prevents acetaminophen-induced acute liver inflammation in vivo. Ann Hepatol 21:100191. https://doi.org/10.1016/j.aohep.2020.03.003