Boron delivery agents for neutron capture therapy of cancer
Tóm tắt
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Tài liệu tham khảo
Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11:3987–4002. https://doi.org/10.1158/1078-0432.ccr-05-0035.
Hatanaka H. Boron neutron capture therapy for brain tumors. In: Karin ABMF, Laws E, editors. Glioma. Berlin: Springer-Verlag; 1991. p. 233–49.
Nakagawa Y, Pooh K, Kobayashi T, Kageji T, Uyama S, Matsumura A, et al. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams. J Neurooncol. 2003;62:87–99.
Miyatake S, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, et al. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages. J Neurosurg. 2005;103:1000–9. https://doi.org/10.3171/jns.2005.103.6.1000.
Miyatake S, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y, et al. Survival benefit of boron neutron capture therapy for recurrent malignant gliomas. J Neurooncol. 2009;91:199–206. https://doi.org/10.1007/s11060-008-9699-x.
Kankaanranta L, Saarilahti K, Makitie A, Valimaki P, Tenhunen M, Joensuu H. Boron neutron capture therapy (BNCT) followed by intensity modulated chemoradiotherapy as primary treatment of large head and neck cancer with intracranial involvement. Radiother Oncol. 2011;99:98–9. https://doi.org/10.1016/j.radonc.2011.02.008.
Kankaanranta L, Seppala T, Koivunoro H, Saarilahti K, Atula T, Collan J, et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int J Radiat Oncol Biol Phys. 2012;82:e67–75. https://doi.org/10.1016/j.ijrobp.2010.09.057.
Ariyoshi Y, Miyatake S, Kimura Y, Shimahara T, Kawabata S, Nagata K, et al. Boron neuron capture therapy using epithermal neutrons for recurrent cancer in the oral cavity and cervical lymph node metastasis. Oncol Rep. 2007;18:861–6.
Kimura Y, Ariyoshi Y, Miyatake S, Shimahara M, Kawabata S, Ono K. Boron neutron capture therapy for papillary cystadenocarcinoma in the upper lip: a case report. Int J Oral Maxillofac Surg. 2009;38:293–5. https://doi.org/10.1016/j.ijom.2008.12.010.
Kimura Y, Ariyoshi Y, Shimahara M, Miyatake S, Kawabata S, Ono K, et al. Boron neutron capture therapy for recurrent oral cancer and metastasis of cervical lymph node. Appl Radiat Isot. 2009;67:S47–9. https://doi.org/10.1016/j.apradiso.2009.03.019.
Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A, et al. First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-BPA PET. Head Neck. 2006;28:850–5. https://doi.org/10.1002/hed.20418.
Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, et al. Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot. 2004;61:1069–73. https://doi.org/10.1016/j.apradiso.2004.05.059.
Kato I, Fujita Y, Maruhashi A, Kumada H, Ohmae M, Kirihata M, et al. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies. Appl Radiat Isot. 2009;67:S37–42. https://doi.org/10.1016/j.apradiso.2009.03.103.
Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, et al. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet. 1989;2:388–9.
Mishima Y. Selective thermal neutron capture therapy of cancer cells using their specific metabolic activities—melanoma as prototype. In: Mishima Y, editor. Cancer neutron capture therapy. New York: Plenum Press; 1996.
Yong Z, Song Z, Zhou Y, Liu T, Zhang Z, Zhao Y, et al. Boron neutron capture therapy for malignant melanoma: first clinical case report in China. Chin J Cancer Res. 2016;28:634–40. https://doi.org/10.21147/j.issn.1000-9604.2016.06.10.
Hiratsuka JF. Malignant melanoma. In: Sauerwein WAGEA, editor. Neutron capture therapy. Berlin: Springer-Verlag; 2012. p. 433.
Hiratsuka J, Kamitani N, Tanaka R, et al. Boron neutron capture therapy for vulvar melanoma and extramammary Paget’s disease of the genital regions with curative clinical responses. Chin J Cancer. 2018, (In press).
Mitsumoto TY, Yajima S, Tsutsui H. Cyclotron-based neutron source for BNCT. New challenges in neutron capture therapy 2010: proceedings of the 14th international congress on neutron capture therapy. 2013. p. 519-22.
Smick T. A compact neutron source designed for the hospital environment. https://www.neutrontherapeutics.com/technology/. 2017. Accessed 3-19-2018.
Sibrian-Vazquez M, Vicente MGH. Boron tumor-delivery for BNCT: Recent developments and perspectives. In: Hosmane NS, editor. Boron science: new technologies and applications. Boca Raton: CRC Press; 2011. p. 203–32.
Nakamura H, Kirihata M. Boron compounds: new candidates for boron carriers in BNCT. In: Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy. Berlin: Springer-Verlag; 2012. p. 99–110.
Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, et al. The chemistry of neutron capture therapy. Chem Rev. 1998;98:1515–62.
Hawthorne MF, Lee MW. A critical assessment of boron target compounds for boron neutron capture therapy. J Neurooncol. 2003;62:33–45.
Miller HC, Miller NE, Muetterties EL. Chemistry of boranes. XX. Syntheses of polyhedral boranes. Inorg Chem. 1964;3:1456–63.
Soloway AH, Hatanaka H, Davis MA. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem. 1967;10:714–7.
Hatanaka H, Nakagawa Y. Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy. Int J Radiat Oncol Biol Phys. 1994;28:1061–6.
Wittig AH, Hideghety K, Paquis P, Heimans J. Current clinical results of the EORTC-study 11961. In: Sauerwein W, Moss RL, Wittig A, editors. Research and development in neutron capture therapy. Bologna: Monduzzi Editore, International Proceedings Division; 2002. p. 1117–22.
Vos MJ, Turowski B, Zanella FE, Paquis P, Siefert A, Hideghety K, et al. Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int J Radiat Oncol Biol Phys. 2005;61:392–9. https://doi.org/10.1016/j.ijrobp.2004.06.008.
Snyder HR, Reedy AJ, Lennarz WJ. Synthesis of aromatic boronic acids. Aldehydo boronic acids and a boronic acid analog of tyrosine. J Am Chem Soc. 1958;80:835–8.
Mishima Y. Melanoma and nonmelanoma neutron capture therapy using gene therapy: overview. In: Larsson B, Crawford J, Weinreich R, editors. Advances in neutron capture therapy. New York: Elsevier; 1997. p. 10–25.
Coderre JA, Glass JD, Fairchild RG, Micca PL, Fand I, Joel DD. Selective delivery of boron by the melanin precursor analogue p-boronophenylalanine to tumors other than melanoma. Can Res. 1990;50:138–41.
Yoshino K, Suzuki A, Mori Y, Kakihana H, Honda C, Mishima Y, et al. Improvement of solubility of p-boronophenylalanine by complex formation with monosaccharides. Strahlenther Onkol. 1989;165:127–9.
Chadha M, Capala J, Coderre JA, Elowitz EH, Iwai J, Joel DD, et al. Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. Int J Radiat Oncol Biol Phys. 1998;40:829–34.
Diaz AZ. Assessment of the results from the phase I/II boron neutron capture therapy trials at the Brookhaven National Laboratory from a clinician’s point of view. J Neurooncol. 2003;62:101–9.
Kankaanranta L, Seppälä T, Koivunoro H, Valimaki P, Beule A, Collan J, Kortesniemi M, Uusi-Simola J, Kotiluoto P, Auterinen I, et al. BPA-based BNCT in the treatment of glioblastoma multiforme: a dose escalation study. In: Zonta AA, Roveda L, Barth RF, editors. 13th international congress on neutron capture therapy, a new option against cancer. vol 30, 2008.
Kankaanranta L, Seppala T, Koivunoro H, Valimaki P, Beule A, Collan J, et al. L-boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: a phase I study. Int J Radiat Oncol Biol Phys. 2011;80:369–76. https://doi.org/10.1016/j.ijrobp.2010.02.031.
Sköld K, Stenstam B, Diaz AZ, Giusti V, Pellettieri L, Hopewell JW. Boron neutron capture therapy for glioblastoma multiforme: advantage of prolonged infusion of BPA-f. Acta Neurol Scand. 2010;122:58–62. https://doi.org/10.1111/j.1600-0404.2009.01267.x.
Hopewell JW, Gorlia T, Pellettieri L, Giusti V, H-Stenstam B, Skold K. Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential. Appl Radiat Isot. 2011;69:1737–40. https://doi.org/10.1016/j.apradiso.2011.03.022.
Kageji T, Mizobuchi Y, Nagahiro S, Nakagawa Y, Kumada H. Long-survivors of glioblastoma treated with boron neutron capture therapy (BNCT). Appl Radiat Isot. 2011;69:1800–2. https://doi.org/10.1016/j.apradiso.2011.03.021.
Kawabata S, Miyatake S, Kuroiwa T, Yokoyama K, Doi A, Iida K, et al. Boron neutron capture therapy for newly diagnosed glioblastoma. J Radiat Res. 2009;50:51–60.
Miyatake S, Tamura Y, Kawabata S, Iida K, Kuroiwa T, Ono K. Boron neutron capture therapy for malignant tumors related to meningiomas. Neurosurgery. 2007;61:82–90. https://doi.org/10.1227/01.neu.0000279727.90650.24.
Suzuki M, Sakurai Y, Nagata K, Kinashi Y, Masunaga S, Ono K, et al. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors. Int J Radiat Oncol Biol Phys. 2006;66:1523–7. https://doi.org/10.1016/j.ijrobp.2006.07.1373.
Barth RF, Vicente MH, Harling OK, Kiger W, Riley KJ, Binns PJ, et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol. 2012;7:146. https://doi.org/10.1186/1748-717x-7-146.
Moss RL. Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl Radiat Isot. 2014;88:2–11. https://doi.org/10.1016/j.apradiso.2013.11.109.
Goodman JH, Yang W, Barth RF, Gao Z, Boesel CP, Staubus AE, et al. Boron neutron capture therapy of brain tumors: biodistribution, pharmacokinetics, and radiation dosimetry sodium borocaptate in patients with gliomas. Neurosurgery. 2000;47:608–21.
Koivunoro H, Hippelainen E, Auterinen I, Kankaanranta L, Kulvik M, Laakso J, et al. Biokinetic analysis of tissue boron (10B) concentrations of glioma patients treated with BNCT in Finland. Appl Radiat Isot. 2015;106:189–94. https://doi.org/10.1016/j.apradiso.2015.08.014.
Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14:284–97. https://doi.org/10.1007/s13311-017-0519-x.
Yang W, Barth RF, Carpenter DE, Moeschberger ML, Goodman JH. Enhanced delivery of boronophenylalanine for neutron capture therapy by means of intracarotid injection and blood-brain barrier disruption. Neurosurgery. 1996;38:985–92.
Yang W, Barth RF, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, et al. Enhanced survival of glioma bearing rats following boron neutron capture therapy with blood-brain barrier disruption and intracarotid injection of boronophenylalanine. J Neurooncol. 1997;33:59–70.
Yang W, Barth RF, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, et al. Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of sodium borocaptate with or without blood-brain barrier disruption. Int J Radiat Oncol Biol Phys. 1997;37:663–72.
Barth RF, Yang W, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, et al. Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood-brain barrier disruption. Can Res. 1997;57:1129–36.
Barth RF, Matalka KZ, Bailey MQ, Staubus AE, Soloway AH, Moeschberger ML, et al. A nude rat model for neutron capture therapy of human intracerebral melanoma. Int J Radiat Oncol Biol Phys. 1994;28:1079–88.
Tajes M, Ramos-Fernandez E, Weng-Jiang X, Bosch-Morato M, Guivernau B, Eraso-Pichot A, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014;31:152–67. https://doi.org/10.3109/09687688.2014.937468.
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harbor Perspect Biol. 2015;7:a020412. https://doi.org/10.1101/cshperspect.a020412.
Semioshkin A, Nizhnik E, Godovikov I, Starikova Z, Bregadze V. Reactions of oxonium derivatives of [B12H12]2 − with amines: synthesis and structure of novel B12-based ammonium salts and amino acids. J Organomet Chem. 2007;692:4020–8. https://doi.org/10.1016/j.jorganchem.2007.06.001.
Kabalka GW, Wu Z, Yao M-L. Synthesis of a series of boronated unnatural cyclic amino acids as potential boron neutron capture therapy agents. Appl Organomet Chem. 2008;22:516–22. https://doi.org/10.1002/aoc.1435.
Kabalka GW, Yao ML, Marepally SR, Chandra S. Biological evaluation of boronated unnatural amino acids as new boron carriers. Appl Radiat Isot. 2009;67:S374–9. https://doi.org/10.1016/j.apradiso.2009.03.104.
Kabalka GW, Shaikh AL, Barth RF, Huo T, Yang W, et al. Boronated unnatural amino acids as new boron carriers for BNCT. In: Liberman S, Kreiner A, Casal M, Menendez P, Schwint A, et al., editor. New Challenges in Neutron Capture Therapy 2010: proceedings of the 14th international congress on neutron capture therapy. Comisión Nacional de Energía Atómica; October 25–29, 2010, Buenos Aires, Argentina, p. 364–7.
Kabalka GW, Shaikh AL, Barth RF, Huo T, Yang W, Gordnier PM, et al. Boronated unnatural cyclic amino acids as potential delivery agents for neutron capture therapy. Appl Radiat Isot. 2011;69:1778–81. https://doi.org/10.1016/j.apradiso.2011.03.035.
Barth RF, Kabalka GW, Yang W, Huo T, Nakkula RJ, Shaikh AL, et al. Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Appl Radiat Isot. 2014;88:38–42. https://doi.org/10.1016/j.apradiso.2013.11.133.
Mier W, Gabel D, Haberkorn U. Conjugation of the closo-borane mereaptoundeca-hydrododecaborate (BSH) to a tumor selective peptide. Anorg Allg Chem. 2004;630:1258–62.
Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W, Barth RF, et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther. 2005;4:1423–9. https://doi.org/10.1158/1535-7163.mct-05-0161.
Yang W, Barth RF, Wu G, Kawabata S, Sferra TJ, Bandyopadhyaya AK, et al. Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res. 2006;12:3792–802. https://doi.org/10.1158/1078-0432.ccr-06-0141.
Wu G, Yang W, Barth RF, Kawabata S, Swindall M, Bandyopadhyaya AK, et al. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res. 2007;13:1260–8. https://doi.org/10.1158/1078-0432.ccr-06-2399.
Yang W, Wu G, Barth RF, Swindall MR, Bandyopadhyaya AK, Tjarks W, et al. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin Cancer Res. 2008;14:883–91. https://doi.org/10.1158/1078-0432.ccr-07-1968.
Al-Madhoun AS, Johnsamuel J, Barth RF, Tjarks W, Eriksson S. Evaluation of human thymidine kinase 1 substrates as new candidates for boron neutron capture therapy. Can Res. 2004;64:6280–6. https://doi.org/10.1158/0008-5472.can-04-0197.
Barth RF, Yang W, Wu G, Swindall M, Byun Y, Narayanasamy S, et al. Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors. Proc Natl Acad Sci USA. 2008;105:17493–7. https://doi.org/10.1073/pnas.0809569105.
Sjuvarsson E, Damaraju VL, Mowles D, Sawyer MB, Tiwari R, Agarwal HK, et al. Cellular influx, efflux, and anabolism of 3-carboranyl thymidine analogs: potential boron delivery agents for neutron capture therapy. J Pharmacol Exp Ther. 2013;347:388–97. https://doi.org/10.1124/jpet.113.207464.
Lewis O, Woolley M, Johnson D, Rosser A, Barua NU, Bienemann AS, et al. Chronic, intermittent convection-enhanced delivery devices. J Neurosci Methods. 2016;259:47–56. https://doi.org/10.1016/j.jneumeth.2015.11.008.
Kawabata S, Yang W, Barth RF, Wu G, Huo T, Binns PJ, et al. Convection enhanced delivery of carboranylporphyrins for neutron capture therapy of brain tumors. J Neurooncol. 2011;103:175–85. https://doi.org/10.1007/s11060-010-0376-5.
Barth RF, Yang W, Nakkula RJ, Byun Y, Tjarks W, Wu LC, et al. Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Appl Radiat Isot. 2015;106:251–5. https://doi.org/10.1016/j.apradiso.2015.06.031.
Renner MW, Miura M, Easson MW, Vicente MG. Recent progress in the syntheses and biological evaluation of boronated porphyrins for boron neutron-capture therapy. Anticancer Agents Med Chem. 2006;6:145–57.
Ol’shevskaya VA, Zaytsev AV, Savchenko AN, et al. Boronated porphyrins and chlorins as potential anticancer drugs. Bull Korean Chem Soc. 2007;28:1910–6.
Kahl S, Koo M: Synthesis and properties of tebrakis-carborane-carboxylate esters of 2;4-bis (−dehydroryethyl) dereteroporphyrin IX. In: Allen B, Moore D, Harrington B, editor. Progress in neutron capture therapy. New York: Plenium Press; 1992. p. 223–6.
Crossley EL, Ziolkowski EJ, Coderre JA, Rendina LM. Boronated DNA-binding compounds as potential agents for boron neutron capture therapy. Mini Rev Med Chem. 2007;7:303–13.
Orlova AV, Kononov LO, Kimel BG, Sivaev IB, Bregadze VI. Conjugates of polyhedral boron compounds with carbohydrates. 4. hydrolytic stability of carborane–lactose conjugates depends on the structure of a spacer between the carborane cage and sugar moiety. Appl Organomet Chem. 2006;20:416–20. https://doi.org/10.1002/aoc.1082.
Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH, et al. Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem. 1996;7:7–15. https://doi.org/10.1021/bc950077q.
Yang W, Barth RF, Wu G, Huo T, Tjarks W, Ciesielski M, et al. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J Neurooncol. 2009;95:355–65. https://doi.org/10.1007/s11060-009-9945-x.
Yang W, Barth RF, Wu G, Tjarks W, Binns P, Riley K. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiat Isot. 2009;67:S328–31. https://doi.org/10.1016/j.apradiso.2009.03.030.
Sun T, Li Y, Huang Y, Zhang Z, Yang W, Du Z, et al. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget. 2016;7:43095–108. https://doi.org/10.18632/oncotarget.9355.
Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev. 2013;65:60–70. https://doi.org/10.1016/j.addr.2012.08.012.
Detta A, Cruickshank GS. L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Can Res. 2009;69:2126–32. https://doi.org/10.1158/0008-5472.can-08-2345.
Azab AK, Srebnik M, Doviner V, Rubinstein A. Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers. J Control Release. 2005;106:14–25. https://doi.org/10.1016/j.jconrel.2005.03.015.
Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, et al. Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res. 2015;25:237–53. https://doi.org/10.1038/cr.2015.9.
Mi P, Yanagie H, Dewi N, Yen HC, Liu X, Suzuki M, et al. Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. J Control Release. 2017;254:1–9. https://doi.org/10.1016/j.jconrel.2017.03.036.
Dewi N, Mi P, Yanagie H, Sakurai Y, Morishita Y, Yanagawa M, et al. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol. 2016;142:767–75. https://doi.org/10.1007/s00432-015-2085-0.
Luderer MJ, de la Puente P, Azab AK. Advancements in tumor targeting strategies for boron neutron capture therapy. Pharm Res. 2015;32:2824–36. https://doi.org/10.1007/s11095-015-1718-y.
Kikuchi S, Kanoh D, Sato S, Sakurai Y, Suzuki M, Nakamura H. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. J Control Release. 2016;237:160–7. https://doi.org/10.1016/j.jconrel.2016.07.017.
Yanagie H, Ogata A, Sugiyama H, Eriguchi M, Takamoto S, Takahashi H. Application of drug delivery system to boron neutron capture therapy for cancer. Expert Opin Drug Deliv. 2008;5:427–43. https://doi.org/10.1517/17425247.5.4.427.
Shelly K, Feakes DA, Hawthorne MF, Schmidt PG, Krisch TA, Bauer WF. Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci USA. 1992;89:9039–43.
Yanagie H, Tomita T, Kobayashi H, Fujii Y, Takahashi T, Hasumi K, et al. Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model. Br J Cancer. 1991;63:522–6.
Feakes DA, Shelly K, Hawthorne MF. Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci USA. 1995;92:1367–70.
Yanagie H, Tomita T, Kobayashi H, Fujii Y, Nonaka Y, Saegusa Y, et al. Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer. 1997;75:660–5.
Watson-Clark RA, Banquerigo ML, Shelly K, Hawthorne MF, Brahn E. Model studies directed toward the application of boron neutron capture therapy to rheumatoid arthritis: boron delivery by liposomes in rat collagen-induced arthritis. Proc Natl Acad Sci USA. 1998;95:2531–4.
Yanagie H, Kobayashi H, Takeda Y, Yoshizaki I, Nonaka Y, Naka S, et al. Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing B-10. Biomed Pharmacother. 2002;56:93–9. https://doi.org/10.1016/S0753-3322(01)00161-5.
Koganei H, Ueno M, Tachikawa S, Tasaki L, Ban HS, Suzuki M, et al. Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. Bioconjug Chem. 2013;24:124–32. https://doi.org/10.1021/bc300527n.
Tachikawa S, Miyoshi T, Koganei H, El-Zaria ME, Vinas C, Suzuki M, et al. Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy. Chem Commun. 2014;50:12325–8. https://doi.org/10.1039/c4cc04344h.
Kueffer PJ, Maitz CA, Khan AA, Schuster SA, Shlyakhtina NI, Jalisatgi SS, et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci USA. 2013;110:6512–7. https://doi.org/10.1073/pnas.1303437110.
Yanagie H, Tomita T, Kobayashi H, Fujii Y, Nonaka Y, Saegusa Y, et al. Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer. 1997;75:660–5. https://doi.org/10.1038/Bjc.1997.118.
Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, et al. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release. 2004;98:195–207. https://doi.org/10.1016/j.jconrel.2004.04.018.
Pan X, Wu G, Yang W, Barth RF, Tjarks W, Lee RJ. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem. 2007;18:101–8. https://doi.org/10.1021/bc060174r.
Nakamura H. Liposomal boron delivery system for neutron capture therapy of cancer. In: Hosmane NS, editor. Boron science: new technologies and applications. Boca Raton: CRC Press; 2012. p. 165–79.
Altieri S, Balzi M, Bortolussi S, Bruschi P, Ciani L, Clerici AM, et al. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J Med Chem. 2009;52:7829–35. https://doi.org/10.1021/jm900763b.
Feakes DA. Design and development of polyhedral borane anions for liposomal delivery. In: Hosmane NS, editor. Boron science: new technologies and applications. Boca Raton: CRC Press; 2011. p. 277–92.
Li T, Hamdi J, Hawthorne MF. Unilamellar liposomes with enhanced boron content. Bioconjug Chem. 2006;17:15–20. https://doi.org/10.1021/bc0501350.
Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, et al. Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neuro Oncol. 2008;87:287–94. https://doi.org/10.1007/s11060-008-9522-8.
Liu HL, Hsu PH, Lin CY, Huang CW, Chai WY, Chu PC, et al. Focused ultrasound enhances central nervous system delivery of bevacizumab for malignant glioma treatment. Radiology. 2016;281:99–108. https://doi.org/10.1148/radiol.2016152444.
Burgess A, Shah K, Hough O, Hynynen K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother. 2015;15:477–91. https://doi.org/10.1586/14737175.2015.1028369.
Yang W, Barth RF, Adams DM, Ciesielski MJ, Fenstermaker RA, Shukla S, et al. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Can Res. 2002;62:6552–8.
Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, et al. Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano. 2015;9:4957–67. https://doi.org/10.1021/nn5070259.
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.
Yi Y, Lin G, Chen S, Liu J, Zhang H, Mi P. Polyester micelles for drug delivery and cancer theranostics: current achievements, progresses and future perspectives. Mater Sci Eng C. 2018;83:218–32. https://doi.org/10.1016/j.msec.2017.10.004.
Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, et al. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano. 2015;9:5913–21. https://doi.org/10.1021/acsnano.5b00532.
Dewi N, Yanagie H, Zhu H, Demachi K, Shinohara A, Yokoyama K, et al. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent. Biomed Pharmacother. 2013;67:451–7. https://doi.org/10.1016/j.biopha.2012.11.010.
Sumitani S, Oishi M, Nagasaki Y. Carborane confined nanoparticles for boron neutron capture therapy: improved stability, blood circulation time and tumor accumulation. React Funct Polym. 2011;71:684–93. https://doi.org/10.1016/j.reactfunctpolym.2011.03.010.
Gao Z, Horiguchi Y, Nakai K, Matsumura A, Suzuki M, Ono K, et al. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials. 2016;104:201–12. https://doi.org/10.1016/j.biomaterials.2016.06.046.
Mandal S, Bakeine GJ, Krol S, Ferrari C, Clerici AM, Zonta C, et al. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications. Appl Radiat Isot. 2011;69:1692–7. https://doi.org/10.1016/j.apradiso.2011.05.002.
Achilli C, Grandi S, Ciana A, Guidetti GF, Malara A, Abbonante V, et al. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomed Nanotechnol Biol Med. 2014;10:589–97. https://doi.org/10.1016/j.nano.2013.10.003.
Dai C, Cai F, Hwang KC, Zhou Y, Zhang Z, Liu X, et al. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas. Sci China Life Sci. 2013;56:163–73. https://doi.org/10.1007/s11427-012-4433-5.
Kabalka GW, Smith GT, Dyke JP, Reid WS, Longford CP, Roberts TG, et al. Evaluation of fluorine-18-BPA-fructose for boron neutron capture treatment planning. J Nucl Med. 1997;38:1762–7.
Kabalka GW, Nichols TL, Smith GT, Miller LF, Khan MK, Busse PM. The use of positron emission tomography to develop boron neutron capture therapy treatment plans for metastatic malignant melanoma. J Neurooncol. 2003;62:187–95.
Imahori Y, Ueda S, Ohmori Y, Sakae K, Kusuki T, Kobayashi T, et al. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res. 1998;4:1833–41.
Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, et al. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998;39:325–33.
Chandra S, Barth RF, Haider SA, Yang W, Huo T, Shaikh AL, et al. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas. PLoS ONE. 2013;8:e75377. https://doi.org/10.1371/journal.pone.0075377.
Chandra S, Ahmad T, Barth RF, Kabalka GW. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J Microsc. 2014;254:146–56. https://doi.org/10.1111/jmi.12126.
Chandra S, Parker DJ, Barth RF, Pannullo SC. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS). J Neurooncol. 2016;127:33–41. https://doi.org/10.1007/s11060-015-2022-8.
Woollard JE, Blue TE, Curran JF, Mengers TF, Barth RF. An alpha autoradiographic technique for determination of 10B concentrations in blood and tissue. Nucl Instrum Methods Phys Res Sect A. 1990;299:600–5. https://doi.org/10.1016/0168-9002(90)90853-X.
Geninatti-Crich S, Alberti D, Szabo I, Deagostino A, Toppino A, Barge A, et al. MRI-guided neutron capture therapy by use of a dual gadolinium/boron agent targeted at tumour cells through upregulated low-density lipoprotein transporters. Chemistry. 2011;17:8479–86. https://doi.org/10.1002/chem.201003741.
Geninatti-Crich S, Alberti D, Szabo I, Deagostino A, Toppino A, Barge A, et al. MRI-guided neutron capture therapy by use of a dual gadolinium/boron agent targeted at tumour cells through upregulated low-density lipoprotein transporters. Chemistry. 2011;17:8479–86. https://doi.org/10.1002/chem.201003741.
Sköld K, Gorlia T, Pellettieri L, Giusti V. B HS, Hopewell JW. Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential. Br J Radiol. 2010;83:596–603. https://doi.org/10.1259/bjr/56953620.
Neuwelt EA, Schiff D. Primary CNS lymphoma: a landmark trial and the next steps. Neurology. 2015;84:1194–5. https://doi.org/10.1212/wnl.0000000000001407.
Doolittle ND, Muldoon LL, Culp AY, Neuwelt EA. Delivery of chemotherapeutics across the blood-brain barrier: challenges and advances. Adv Pharmacol. 2014;71:203–43. https://doi.org/10.1016/bs.apha.2014.06.002.
Doolittle ND, Dosa E, Fu R, Muldoon LL, Maron LM, Lubow MA, et al. Preservation of cognitive function in primary CNS lymphoma survivors a median of 12 years after enhanced chemotherapy delivery. J Clin Oncol. 2013;31:4026–7. https://doi.org/10.1200/jco.2013.52.7747.
Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, et al. Intraarterial chemotherapy and osmotic blood-brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer. 2008;112:581–8. https://doi.org/10.1002/cncr.23221.
Angelov L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH, Peereboom DM, et al. Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol. 2009;27:3503–9. https://doi.org/10.1200/jco.2008.19.3789.
Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA. Intra-arterial chemotherapy with osmotic blood-brain barrier disruption for aggressive oligodendroglial tumors: results of a phase I study. Neurosurgery. 2010;66:48–58. https://doi.org/10.1227/01.neu.0000363152.37594.f7.
Burgess A, Hynynen K. Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv Exp Med Biol. 2016;880:293–308. https://doi.org/10.1007/978-3-319-22536-4_16.
Pietrangeli D, Ricciardi G. Neutral and polyanionic carboranylporphyrazines: synthesis and physico-chemical properties. Appl Radiat Isot. 2009;67:S97–100. https://doi.org/10.1016/j.apradiso.2009.03.023.
Ito Y, Kimura Y, Shimahara T, Ariyoshi Y, Shimahara M, Miyatake S, et al. Disposition of TF-PEG-Liposome-BSH in tumor-bearing mice. Appl Radiat Isot. 2009;67:S109–10. https://doi.org/10.1016/j.apradiso.2009.03.018.
Zhu Y, Koh Cheng Y, John AM, Narayan SH. Recent developments in boron neutron capture therapy (BNCT) driven by nanotechnology. Curr Chem Biol. 2007;1:141–9. https://doi.org/10.2174/2212796810701020141.
Yinghuai Z, Cheng Yan K, Maguire JA. Recent developments in boron neutron capture therapy driven by nanotechnology. In: Hosmane NS, editor. Boron science: new technologies and applications. Boca Raton: CRC Press; 2007. p. 147–63.
Heber E, Trivillin VA, Nigg D, Kreimann EL, Itoiz ME, Rebagliati RJ, et al. Biodistribution of GB-10 (Na(2)(10)B10H10 compound for boron neutron capture therapy (BNCT) in an experimental model of oral cancer in the hamster cheek pouch. Arch Oral Biol. 2004;49:313–24. https://doi.org/10.1016/j.archoralbio.2003.10.003.
Bregadze VI, Sivaev IB, Lobanova IA, Titeev RA, Brittal DI, Grin MA, et al. Conjugates of boron clusters with derivatives of natural chlorin and bacteriochlorin. Appl Radiat Isot. 2009;67:S101–4. https://doi.org/10.1016/j.apradiso.2009.03.024.
Suzuki M, Sakurai Y, Masunaga S, Kinashi Y, Nagata K, Ono K. Dosimetric study of boron neutron capture therapy with borocaptate sodium (BSH)/lipiodol emulsion (BSH/lipiodol-BNCT) for treatment of multiple liver tumors. Int J Radiat Oncol Biol Phys. 2004;58:892–6. https://doi.org/10.1016/j.ijrobp.2003.09.084.
Soloway AH, Zhuo JC, Rong FG, Lunato AJ, Ives DH, Barth RF, et al. Identification, development, synthesis and evaluation of boron-containing nucleosides for neutron capture therapy. J Organomet Chem. 1999;581:150–5. https://doi.org/10.1016/S0022-328X(99)00085-6.
Cai J, Soloway AH, Barth RF, Adams DM, Hariharan JR, Wyzlic IM, et al. Boron-containing polyamines as DNA targeting agents for neutron capture therapy of brain tumors: synthesis and biological evaluation. J Med Chem. 1997;40:3887–96. https://doi.org/10.1021/jm960787x.
Menichetti L, De Marchi D, Calucci L, Ciofani G, Menciassi A, Forte C. Boron nitride nanotubes for boron neutron capture therapy as contrast agents in magnetic resonance imaging at 3 T. Appl Radiat Isot. 2011;69:1725–7. https://doi.org/10.1016/j.apradiso.2011.02.032.
Lin WY, Chi CW, Ho YJ, Wu IC, Chung YT, Chen SD, et al. Boron-lipiodol: a potential new drug for the treatment of liver tumors. Anticancer Res. 2002;22:3989–92.
Wu G, Barth RF, Yang W, Chatterjee M, Tjarks W, Ciesielski MJ, et al. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem. 2004;15:185–94. https://doi.org/10.1021/bc0341674.
Zhuo JC, Cai J, Soloway AH, Barth RF, Adams DM, Ji W, et al. Synthesis and biological evaluation of boron-containing polyamines as potential agents for neutron capture therapy of brain tumors. J Med Chem. 1999;42:2492. https://doi.org/10.1021/jm990225o.
Lai CH, Lin YC, Chou FI, Liang CF, Lin EW, Chuang YJ, et al. Design of multivalent galactosyl carborane as a targeting specific agent for potential application to boron neutron capture therapy. Chem Commun. 2012;48:612–4. https://doi.org/10.1039/c1cc14447b.