Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorphaDL-1

Springer Science and Business Media LLC - Tập 11 - Trang 1-12 - 2011
Vira M Ubiyvovk1,2, Vladimir M Ananin2, Alexander Y Malyshev1, Hyun Ah Kang2,3, Andriy A Sibirny1,4
1Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
2Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
3Department of Life Science, Chung-Ang University, Heukseok-dong, Dongjak-gu, Korea
4University of Rzeszow, Rzeszow, Poland

Tóm tắt

Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine) is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of H. polymorpha DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (GSH2) and its precursor cysteine (MET4) was studied. Glutathione producing capacity of H. polymorpha DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed), carbon substrate (glucose, methanol) and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG) or GSH+GSSGin, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG) or GSH+GSSGex, per liter of the culture medium. H. polymorpha is an competitive glutathione producer as compared to other known yeast and bacteria strains (Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis etc.) with good perspectives for further improvement especially for production of extracellular form of glutathione.

Tài liệu tham khảo

Penninckx MJ: A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol. 2000, 26: 737-742. 10.1016/S0141-0229(00)00165-4. Pócsi I, Prade RA, Penninckx MJ: Glutathione, altruistic metabolite in fungi. Adv Microb Physiol. 2004, 49: 1-76. Li Y, Wei G, Chen J: Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol. 2004, 66: 233-242. 10.1007/s00253-004-1751-y. Bachhawat AK, Ganguli D, Kaur J, Kasturia N, Thakur A, Kaur H, Kumar A, Yadav A: Glutathione Production in Yeast. Yeast Biotechnology: Diversity and Applications. Edited by: Satyanarayana T, Kunze G. 2009, Springer Science + Business Media B.V, 259: chapter 13 Chatterjee S, de Lamirande E, Gagnon C: Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol Reprod Dev. 2001, 60: 498-506. 10.1002/mrd.1115. Kozhemyakin LA, Balasovski MB: Methods for production of the oxidized glutathione composite with CIS-diamminedichloroplatinum and pharmaceutical compositions based thereof regulating metabolism, proliferation, differentiation and apoptotic mechanisms for normal and transformed cells. US patent 7,371,411. 2008 Hansenula polymorpha. Biology and Application. Edited by: Gellissen G. 2002, Weinheim: Wiley-VCH Verlag GmbH Production of Recombinant Proteins. Novel Microbial and Eukaryotic Expression Systems. Edited by: Gellissen G. 2005, Weinheim: Wiley-VCH Verlag GmbH Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA: Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng. 2009, 104: 911-919. 10.1002/bit.22457. Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA: Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng. 2009, 11: 234-242. 10.1016/j.ymben.2009.04.001. Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA: Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res. 2008, 8: 1164-1174. 10.1111/j.1567-1364.2008.00429.x. Dmytruk OV, Dmytruk KV, Abbas CA, Voronovsky AY, Sibirny AA: Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell Fact. 2008, 7: 21-10.1186/1475-2859-7-21. Ramezani-Rad M, Hollenberg CP, Lauber J, Wedler H, Griess E, Wagner C, Albermann K, Hani J, Piontek M, Dahlems U, Gellissen G: The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res. 2003, 4: 207-215. 10.1016/S1567-1356(03)00125-9. Hansenula polymorpha Genome Database. [http://genome.jgi-psf.org/Hanpo1/Hanpo1.home.html] Kim YH, Han KY, Lee K, Heo JH, Kang HA, Lee J: Comparative proteome analysis of Hansenula polymorpha DL1and A16. Proteomics. 2004, 4: 2005-2013. 10.1002/pmic.200300739. Oh KS, Kwon O, Oh YW, Sohn MJ, Jung S, Kim YK, Kim MG, Rhee SK, Gellissen G, Kang HA: Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: optimization and evaluation for transcript profiling. J Microbiol Biotechnol. 2004, 14: 1239-1248. Sahm H: Metabolism of methanol by yeast. Adv Biochem Eng. 1977, 6: 77-103. Sibirny AA, Ubiyvovk VM, Gonchar MV, Titorenko VI, Voronovsky AY, Kapultsevich YG, Bliznik KM: Reaction of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth. Arch Microbiol. 1990, 154: 566-575. 10.1007/BF00248838. Horiguchi H, Yurimoto H, Kato N, Sakai Y: Antioxidant system within yeast peroxisome--Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem. 2001, 276: 14279-14288. Ubiyvovk VM, Telegus YV, Sibirny AA: Isolation and characterization of glutathione-deficient mutants of the methylotrophic yeast Hansenula polymorpha. Microbiology. 1999, Moscow, 68: 26-31. Ubiyvovk VM, Nazarko TY, Stasyk OG, Sohn MJ, Kang HA, Sibirny AA: GSH2, a Gene Encoding gamma-Glutamylcysteine Synthetase in the Methylotrophic Yeast Hansenula polymorpha. FEMS Yeast Research. 2002, 2: 327-332. Ubiyvovk VM, Maszewski J, Bartosz G, Sibirny AA: Vacuolar accumulation and extracellular extrusion of electrophilic compounds by the cells of wild type strain and glutathione deficient mutants of the methylotrophic yeast Hansenula polymorpha. Cell Biology Int. 2003, 27: 785-789. 10.1016/S1065-6995(03)00127-6. Ubiyvovk VM, Blazhenko OV, Gigot D, Penninckx M, Sibirny AA: Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biology International. 2006, 30: 665-671. 10.1016/j.cellbi.2006.04.006. Sohn MJ, Ubiyvovk VM, Oh DB, Kwon O, Lee SY, Kang HA: Transcriptome analysis of Met4p-mediated sulfur regulatory circuit in the methylotrophic yeast Hansenula polymorpha. Proceedings of the Intern.Specialised Symp. On Yeasts ISSY25, Systems Biology of Yeasts-from Models to Applications: 18-21 June 2006; Hanasaari, Espoo, Finland. Edited by: Kuokka A, Penttila M. 2006, Organised by VTT, Finland, P105- Thomas D, Jacquemin I, Surdin-Kerjan Y: MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1992, 12: 1719-1727. Blazhenko OV, Zimmermann M, Kang HA, Bartosz G, Penninckx M, Ubiyvovk VM, Sibirny AA: Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals. 2006, 19: 593-599. 10.1007/s10534-006-0005-0. Wang Z, Tan T, Song J: Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production. Process Biochemistry. 2007, 42: 108-111. 10.1016/j.procbio.2006.07.008. Lahtchev KL, Semenova VD, Tolstorukov ·II, van der Klei I, Veenhuis M: Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732. Arch Microbiol. 2002, 177: 150-158. 10.1007/s00203-001-0370-6. Gasch AP, Werner-Washburne M: The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics. 2002, 2: 181-192. 10.1007/s10142-002-0058-2. Klatt P, Lamas S: Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem. 2000, 267: 4928-4944. 10.1046/j.1432-1327.2000.01601.x. Esterbauer H, Schaur RJ, Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med. 1991, 11: 81-128. 10.1016/0891-5849(91)90192-6. Hartner FS, Glieder A: Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories. 2006, 5: 39-60. 10.1186/1475-2859-5-39. Ananin VM, Baev AV, Vel'kov VV: Controlled Cultivation of Methylotrophic Yeast Hansenula polymorpha. Applied Biochemistry and Microbiology. 1997, 33: 74-77. Park BS, Ananin V, Kim CH, Rhee SK, Kang HA: Secretory production of Zymomonas mobilis levansucrase by methylotrophic yeast Hansenula polymorpha. Enzyme and Microbial Technology. 2004, 34: 132-138. 10.1016/j.enzmictec.2003.09.005. Bystrykh LV, Sokolov AP, Trotsenko YA: Purification and properties of dihydroxyacetone synthase from the methylotrophic yeast Candida boidinii. FEBS Lett. 1981, 132: 324-328. 10.1016/0014-5793(81)81189-1. Kang HA, Kang W, Hong WK, Kim MW, Kim JY, Sohn JH, Choi ES, Choe KB, Sang KR: Development of Expression Systems for the Production of Recombinant Human Serum Albumin Using the MOX Promoter in Hansenula polymorpha DL-1. Biotechnology and Bioengineering. 2001, 76: 175-185. 10.1002/bit.1157. Perrone GG, Grant CM, Dawes IW: Genetic and Environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell. 2005, 16: 218-230. 10.1091/mbc.E04-07-0560. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, Cold Spring Harbor, NY: Cold Spring Harbor Press, 2 Sohn JH, Choi ES, Kang HA, Rhee JS, Agaphonov MO, Ter-Avanesyan MD, Rhee SK: A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1. Appl Microbiol Biotechnol. 1999, 51: 800-807. 10.1007/s002530051465. Yee L, Blanch HW: Recombinant Protein Expression in High Cell Density Fed-Batch Cultures of Escherichia coli (Review). Biotechnology. 1992, 10: 1550-1555. 10.1038/nbt1292-1550. Brehe J, Burch HB: Enzymatic assay of glutathione. Anal Biochem. 1976, 74: 189-197. 10.1016/0003-2697(76)90323-7.