Tyrosine kinase signalling in breast cancer: Modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates
Tóm tắt
The past decade has seen the definition of key signalling pathways downstream of receptor tyrosine kinases (RTKs) in terms of their components and the protein-protein interactions that facilitate signal transduction. Given the strong evidence that links signalling by certain families of RTKs to the progression of breast cancer, it is not surprising that the expression profile of key downstream signalling intermediates in this disease has also come under scrutiny, particularly because some exhibit transforming potential or amplify mitogenic signalling pathways when they are overexpressed. Reflecting the diverse cellular processes regulated by RTKs, it is now clear that altered expression of such signalling proteins in breast cancer may influence not only cellular proliferation (eg Grb2) but also the invasive properties of the cancer cells (eg EMS1/cortactin).
Tài liệu tham khảo
Pawson T, Scott J: Signaling through scaffold, anchoring and adaptor proteins. Science. 1997, 278: 2075-2080. 10.1126/science.278.5346.2075.
Schlessinger J, Ullrich A: Growth factor signaling by receptor tyrosine kinases. Neuron. 1992, 9: 383-391.
Mayer B: Clamping down on Src activity. Curr Biol. 1997, 7: R295-R298. 10.1016/S0960-9822(06)00141-2.
Jacobs C, Rubsamen H: Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas. Cancer Res. 1983, 43: 1696-1702.
Rosen N, Bolen JB, Schwartz AM, et al: Analysis of pp60c-src protein kinase activity in human tumor cell lines and tissues. J Biol Chem. 1986, 261: 13754-13759.
Hennipman A, van Oirschot BA, Smits J, Rijksen G, Staal GEJ: Tyrosine kinase activity in breast cancer, benign breast disease, and normal breast tissue. Cancer Res. 1989, 49: 516-521.
Ottenhoff-Kalff AE, Rijksen G, van Beurden EACM, et al: Characterisation of protein tyrosine kinases from human breast cancer: Involvement of the c-src oncogene product. Cancer Res. 1992, 52: 4773-4778.
Verbeek B, Vroom T, Adriaansen-Slot S, et al: c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J Pathol. 1996, 180: 383-388. 10.1002/(SICI)1096-9896(199612)180:4<383::AID-PATH686>3.3.CO;2-E.
Daly RJ: Take your partners, please: signal diversification by the erbB family of receptor tyrosine kinases. Growth Factors. 1999, 16: 255-263.
Pinkas-Kramarski R, Alroy I, Yarden Y: ErbB receptors and EGF-like ligands: cell lineage determination and oncogenesis through combinatorial signalling. J Mam Gland Biol Neoplasia. 1997, 2: 97-107. 10.1023/A:1026343528967.
Egan C, Pang A, Durda D, et al: Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. Oncogene. 1999, 18: 1227-1237. 10.1038/sj/onc/1202233. This paper represents the first demonstration that a protein tyrosine phosphatase activity directed towards c-Src Tyr530 is upregulated in breast cancer cells.
Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ: Tyrosine kinase signalling in breast cancer: EGF receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000,
Andrechek ER, Muller WJ: Tyrosine kinase signalling in breast cancer: tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer. Breast Cancer Res. 2000,
van der Geer P, Hunter T: Receptor protein tyrosine kinases and their signal transduction pathways. Ann Rev Cell Biol. 1994, 10: 251-337. 10.1146/annurev.cellbio.10.1.251.
Arteaga CL, Johnson MD, Todderud G, et al: Elevated content of the tyrosine kinase substrate phospholipase C-γl in primary human breast carcinomas. Proc Natl Acad Sci USA. 1991, 88: 10435-10439.
Chen P, Gupta K, Wells A: Cell movement elicited by epidermal growth factor receptor requires kinase and autophosphorylation but is separable from mitogenesis. J Cell Biol. 1994, 124: 547-555.
Daly RJ, Binder MD, Sutherland RL: Overexpression of the Grb2 gene in human breast cancer cell lines. Oncogene. 1994, 9: 2723-2727.
Verbeek B, Adriaansen-Slot S, Rijksen G, Vroom T: Grb2 overexpression in nuclei and cytoplasm of human breast cells: a histochemical and biochemical study of normal and neoplastic mammary tissue specimens. J Pathol. 1997, 183: 195-203. 10.1002/(SICI)1096-9896(199710)183:2<195::AID-PATH901>3.3.CO;2-P.
Suen KL, Bustelo XR, Pawson T, Barbacid M: Molecular cloning of the mouse grb2 gene: differential expression of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors. Mol Cell Biol. 1993, 13: 5500-5512.
Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D: Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on ras. Nature. 1993, 363: 88-92. 10.1038/363088a0.
Skolnik EY, Batzer A, Li N, et al: The function of GRB2 in linking the insulin receptor to ras signaling pathways. Science. 1993, 260: 1953-1955.
Cheng A, Saxton T, Sakai R, et al: Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell. 1998, 95: 793-803. This paper demonstrates that Grb2 gene dosage is rate limiting for mammary gland transformation in response to expression of the PyV MT oncogene.
Daly R: The Grb7 family of signalling proteins. Cell Signal. 1998, 10: 613-618. 10.1016/S0898-6568(98)00022-9.
He W, Rose D, Olefsky J, Gustafson T: Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem. 1998, 273: 6860-6867. 10.1074/jbc.273.12.6860. See [25•].
Kasus-Jacobi A, Perdereau D, Auzan C, et al: Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J Biol Chem. 1998, 273: 26026-26035. 10.1074/jbc.273.40.26026. These two papers demonstrate the presence of a novel protein–protein interaction region (the BPS domain) in Grb10 and Grb14, which targets the activated kinase domain of the insulin receptor and IGF-I receptor. This may contribute to modulation of insulin receptor/IGF-I receptor signalling by these adaptors.
Stein D, Wu J, Fuqua SAW, et al: The SH2 domain protein Grb-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 1994, 13: 1331-1340.
Fiddes RJ, Campbell DH, Janes PW, et al: Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. J Biol Chem. 1998, 273: 7717-7724. 10.1074/jbc.273.13.7717.
Dong L, Du H, Porter S, et al: Cloning, chromosome localization, expression and characterization of a Src homology 2 and pleckstrin homology domain-containing insulin receptor binding protein hGrb10γ. J Biol Chem. 1997, 272: 29104-29112. 10.1074/jbc.272.46.29104.
Daly RJ, Sanderson GM, Janes PJ, Sutherland RL: Cloning and characterization of Grb14, a novel member of the Grb7 gene family. J Biol Chem. 1996, 271: 12502-12510. 10.1074/jbc.271.21.12502.
Tanaka S, Mori M, Akiyoshi T, et al: A novel variant of human Grb7 is associated with invasive esophageal carcinoma. J Clin Invest. 1998, 102: 821-827. This paper describes an association between the expression of a novel Grb7 variant and the invasive and metastatic potential of oesophageal cancers, and also demonstrates that downregulation of Grb7 expression by an antisense strategy inhibits invasion of oesophageal cancer cells in vitro.
Miyoshi N, Kuroiwa Y, Kohda T, et al: Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci USA. 1998, 95: 1102-1107. 10.1073/pnas.95.3.1102.
Zhang X, Yee D: Tyrosine kinase signalling in breast cancer: insulin-like growth factors and their receptors in breast cancer. Breast Cancer Res. 2000,
Schuuring E, Vernoeven E, Litvinov S, Michalides RJAM: The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell substratum contact sites. Mol Cell Biol. 1993, 13: 2891-2898.
Huang C, Ni Y, Wang T, et al: Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem. 1997, 272: 13911-13915. 10.1074/jbc.272.21.13911.
Huang C, Liu J, Haudenschild C, Zhan X: The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem. 1998, 273: 25770-25776. 10.1074/jbc.273.40.25770. This is the first demonstration that tyrosine phosphorylation of EMS1/cortactin on sites phosphorylated by c-Src in vitro and in vivo is required for the increase in cell motility induced by EMS1/cortactin overexpression.
Patel A, Schechter G, Wasilenko W, Somers K: Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene. 1998, 16: 3227-3232. 10.1038/sj/onc/1201850.
Fantl V, Smith R, Brookes S, Dickson C, Peters G: Chromosome 11q13 abnormalities in human breast cancer. Cancer Surv. 1993, 18: 77-94.
Hui R, Campbell D, Lee C, et al: EMS1 amplification can occur independently of CCND1 or INT2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene. 1997, 15: 1617-1623. 10.1038/sj/onc/1201311. The finding that EMS1 amplification, unlike that of CCND1, is associated with poor prognosis in ER-negative patients suggests that EMS1 function is regulated differently in this patient subset, possibly due to overexpression of the EGF receptor and erbB2.
Hui R, Ball J, Macmillan R, et al: EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene. 1998, 17: 1053-1059. 10.1038/sj/onc/1202023.
van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E: The redistribution of cortactin into cell-matrix contact sites in human carcinoma cells with 11q13 amplification is associated with both overexpression and post-translational modification. J Biol Chem. 1997, 272: 7374-7380. 10.1074/jbc.272.11.7374.
Campbell D, Sutherland R, Daly R: Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer Res. 1999, 59: 5376-5385. This study identified phosphorylation by the MAPKs as a mechanism for regulation of EMS1 function by the EGF receptor.