Light-cone distribution amplitudes of pseudoscalar mesons from lattice QCD

Journal of High Energy Physics - Tập 2019 - Trang 1-35 - 2019
Gunnar S. Bali1,2, Vladimir M. Braun1, Simon Bürger1, Meinulf Göckeler1, Michael Gruber1, Fabian Hutzler1, Piotr Korcyl3, Andreas Schäfer1, André Sternbeck4, Philipp Wein1
1Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany
2Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India
3Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
4Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Jena, Germany

Tóm tắt

We present the first lattice determination of the two lowest Gegenbauer moments of the leading-twist pion and kaon light-cone distribution amplitudes with full control of all errors: $$ {a}_2^{\pi }={0.101}_{-24}^{+24} $$ for the pion; $$ {a}_1^K={0.0533}_{-35}^{+34} $$ and $$ {a}_2^K={0.090}_{-20}^{+19} $$ for the kaon. The calculation is carried out on 35 different CLS ensembles with Nf = 2 + 1 flavors of dynamical Wilson-clover fermions. These cover a multitude of pion and kaon mass combinations (including the physical point) and 5 different lattice spacings down to a = 0.039 fm. The momentum smearing technique and a new operator basis are employed to reduce statistical fluctuations and to improve the overlap with the ground states. The results are obtained from a combined chiral and continuum limit extrapolation that includes three separate trajectories in the quark mass plane.

Tài liệu tham khảo

A.V. Radyushkin, Deep elastic processes of composite particles in field theory and asymptotic freedom, hep-ph/0410276 [INSPIRE]. V.L. Chernyak and A.R. Zhitnitsky, Asymptotic form of hadronic form factors in the quark model, JETP Lett.25 (1977) 510 [Pisma Zh. Eksp. Teor. Fiz. 25 (1977) 544] [INSPIRE]. G.P. Lepage and S.J. Brodsky, Exclusive processes in Quantum Chromodynamics: The Form Factors of Baryons at Large Momentum Transfer, Phys. Rev. Lett.43 (1979) 545 [Erratum ibid. 43 (1979) 1625] [INSPIRE]. G.P. Lepage and S.J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form factors of mesons, Phys. Lett.87B (1979) 359 [INSPIRE]. A.V. Efremov and A.V. Radyushkin, Asymptotic behavior of the pion form factor in quantum chromodynamics, Theor. Math. Phys.42 (1980) 97 [INSPIRE]. A.V. Efremov and A.V. Radyushkin, Factorization and asymptotic behaviour of pion form factor in QCD, Phys. Lett.94B (1980) 245 [INSPIRE]. G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev.D 22 (1980) 2157 [INSPIRE]. V.L. Chernyak and A.R. Zhitnitsky, Exclusive decays of heavy mesons, Nucl. Phys.B 201 (1982) 492 [Erratum ibid. B 214 (1983) 547] [INSPIRE]. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Theoretical foundations, Nucl. Phys.B 147 (1979) 385 [INSPIRE]. V.L. Chernyak and A.R. Zhitnitsky, Asymptotic behaviour of exclusive processes in QCD, Phys. Rept.112 (1984) 173 [INSPIRE]. N. Isgur and C.H. Llewellyn Smith, The applicability of perturbative QCD to exclusive processes, Nucl. Phys.B 317 (1989) 526 [INSPIRE]. A.V. Radyushkin, Hadronic form factors: Perturbative QCD vs QCD sum rules, Nucl. Phys.A 532 (1991) 141c [INSPIRE]. V.A. Nesterenko and A.V. Radyushkin, Sum rules and pion form factor in QCD, Phys. Lett.115B (1982) 410 [INSPIRE]. S.V. Mikhailov and A.V. Radyushkin, Nonlocal condensates and QCD sum rules for the pion wave function, Phys. Rev.D 45 (1992) 1754 [INSPIRE]. A.P. Bakulev, S.V. Mikhailov and N.G. Stefanis, QCD-based pion distribution amplitudes confronting experimental data, Phys. Lett.D 508 (2001) 279 [Erratum ibid. B 590 (2004) 309] [hep-ph/0103119] [INSPIRE]. V.M. Braun and I.E. Filyanov, QCD sum rules in exclusive kinematics and pion wave function, Z. Phys.C 44 (1989) 157 [INSPIRE]. V.M. Braun and I.E. Halperin, Soft contribution to the pion form factor from light-cone QCD sum rules, Phys. Lett.B 328 (1994) 457 [hep-ph/9402270] [INSPIRE]. V.M. Braun, A. Khodjamirian and M. Maul, Pion form factor in QCD at intermediate momentum transfers, Phys. Rev.D 61 (2000) 073004 [hep-ph/9907495] [INSPIRE]. A. Khodjamirian, R. Rückl, S. Weinzierl, C.W. Winhart and O.I. Yakovlev, Predictions on \( B\to \pi \overline{l}{\nu}_l \), \( D\to \pi \overline{l}{\nu}_l \), and \( D\to K\overline{l}{\nu}_l \)from QCD light-cone sum rules, Phys. Rev.D 62 (2000) 114002 [hep-ph/0001297] [INSPIRE]. P. Ball and R. Zwicky, New results on B → π, K, η decay form factors from light-cone sum rules, Phys. Rev.D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE]. A.P. Bakulev, A.V. Pimikov and N.G. Stefanis, QCD sum rules with nonlocal condensates and the spacelike pion form factor, Phys. Rev.D 79 (2009) 093010 [arXiv:0904.2304] [INSPIRE]. S.S. Agaev, V.M. Braun, N. Offen and F.A. Porkert, Light cone sum rules for the π 0γ ∗γ form factor revisited, Phys. Rev.D 83 (2011) 054020 [arXiv:1012.4671] [INSPIRE]. A. Khodjamirian, Th. Mannel, N. Offen and Y.-M. Wang, B → πℓν ℓwidth and |V ub| from QCD light-cone sum rules, Phys. Rev.D 83 (2011) 094031 [arXiv:1103.2655] [INSPIRE]. A.P. Bakulev, S.V. Mikhailov, A.V. Pimikov and N.G. Stefanis, Comparing antithetic trends of data for the pion-photon transition form factor, Phys. Rev.D 86 (2012) 031501(R) [arXiv:1205.3770] [INSPIRE]. S.V. Mikhailov, A.V. Pimikov and N.G. Stefanis, Systematic estimation of theoretical uncertainties in the calculation of the pion-photon transition form factor using light-cone sum rules, Phys. Rev.D 93 (2016) 114018 [arXiv:1604.06391] [INSPIRE]. BaBar collaboration, Measurement of the γγ ∗→ π 0transition form factor, Phys. Rev.D 80 (2009) 052002 [arXiv:0905.4778] [INSPIRE]. M.V. Polyakov, On the Pion Distribution Amplitude Shape, JETP Lett.90 (2009) 228 [arXiv:0906.0538] [INSPIRE]. A.V. Radyushkin, Shape of pion distribution amplitude, Phys. Rev.D 80 (2009) 094009 [arXiv:0906.0323] [INSPIRE]. Belle collaboration, Measurement of γγ ∗→ π 0transition form factor at Belle, Phys. Rev.D 86 (2012) 092007 [arXiv:1205.3249] [INSPIRE]. Belle-II collaboration, The Belle II Physics Book, arXiv:1808.10567 [INSPIRE]. L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt and P.C. Tandy, Imaging Dynamical Chiral-Symmetry Breaking: Pion Wave Function on the Light Front, Phys. Rev. Lett.110 (2013) 132001 [arXiv:1301.0324] [INSPIRE]. N.G. Stefanis and A.V. Pimikov, Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson, Nucl. Phys.A 945 (2016) 248 [arXiv:1506.01302] [INSPIRE]. E. Ruiz Arriola and W. Broniowski, Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model, Phys. Rev.D 66 (2002) 094016 [hep-ph/0207266] [INSPIRE]. E. Ruiz Arriola and W. Broniowski, Pion transition form factor and distribution amplitudes in large-N cRegge models, Phys. Rev.D 74 (2006) 034008 [hep-ph/0605318] [INSPIRE]. A.S. Kronfeld and D.M. Photiadis, Phenomenology on the lattice: Composite operators in lattice gauge theory, Phys. Rev.D 31 (1985) 2939 [INSPIRE]. G. Martinelli and C.T. Sachrajda, A lattice calculation of the second moment of the pion’s distribution amplitude, Phys. Lett.B 190 (1987) 151 [INSPIRE]. T.A. DeGrand and R.D. Loft, Lattice pseudoscalar-meson wave-function properties, Phys. Rev.D 38 (1988) 954 [INSPIRE]. UKQCD collaboration, The second moment of the pion’s distribution amplitude, Nucl. Phys. Proc. Suppl.83 (2000) 235 [hep-lat/9909147] [INSPIRE]. L. Del Debbio, M. Di Pierro and A. Dougall, The Second Moment of the Pion Light Cone Wave Function, Nucl. Phys. Proc. Suppl.119 (2003) 416 [hep-lat/0211037] [INSPIRE]. D. Daniel, R. Gupta and D.G. Richards, A Calculation of the pion’s quark distribution amplitude in lattice QCD with dynamical fermions, Phys. Rev.D 43 (1991) 3715 [INSPIRE]. V.M. Braun et al., Moments of pseudoscalar meson distribution amplitudes from the lattice, Phys. Rev.D 74 (2006) 074501 [hep-lat/0606012] [INSPIRE]. R. Arthur et al., Lattice results for low moments of light meson distribution amplitudes, Phys. Rev.D 83 (2011) 074505 [arXiv:1011.5906] [INSPIRE]. V.M. Braun et al., Second moment of the pion light-cone distribution amplitude from lattice QCD, Phys. Rev.D 92 (2015) 014504 [arXiv:1503.03656] [INSPIRE]. M. Bruno et al., Simulation of QCD with N f= 2 + 1 flavors of non-perturbatively improved Wilson fermions, JHEP02 (2015) 043 [arXiv:1411.3982] [INSPIRE]. G.S. Bali, B. Lang, B.U. Musch and A. Schäfer, Novel quark smearing for hadrons with high momenta in lattice QCD, Phys. Rev.D 93 (2016) 094515 [arXiv:1602.05525] [INSPIRE]. RQCD collaboration, Second moment of the pion distribution amplitude with the momentum smearing technique, Phys. Lett.B 774 (2017) 91 [arXiv:1705.10236] [INSPIRE]. G.S. Bali et al., Pion and Kaon Distribution Amplitudes from lattice QCD: towards the continuum limit, PoS(LATTICE2018) 107 [arXiv:1811.06050] [INSPIRE]. RQCD collaboration, Light-cone distribution amplitudes of octet baryons from lattice QCD, Eur. Phys. J.A 55 (2019) 116 [arXiv:1903.12590] [INSPIRE]. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE]. S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J.C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE]. V.M. Braun, G.P. Korchemsky and D. Müller, The Uses of Conformal Symmetry in QCD, Prog. Part. Nucl. Phys.51 (2003) 311 [hep-ph/0306057] [INSPIRE]. M. Falcioni, M.L. Paciello, G. Parisi and B. Taglienti, Again on SU(3) glueball mass, Nucl. Phys.B 251 (1985) 624 [INSPIRE]. C. Sturm, Y. Aoki, N.H. Christ, T. Izubuchi, C.T.C. Sachrajda and A. Soni, Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point, Phys. Rev.D 80 (2009) 014501 [arXiv:0901.2599] [INSPIRE]. M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP07 (2011) 036 [arXiv:1105.4749] [INSPIRE]. M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun.184 (2013) 519 [arXiv:1206.2809] [INSPIRE]. G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for non-perturbative renormalization of lattice operators, Nucl. Phys.B 445 (1995) 81 [hep-lat/9411010] [INSPIRE]. K.G. Chetyrkin and A. Rétey, Renormalization and running of quark mass and field in the regularization invariant and \( \overline{\mathrm{MS}} \)schemes at three loops and four loops, Nucl. Phys.B 583 (2000) 3 [hep-ph/9910332] [INSPIRE]. J.A. Gracey, Three loop anomalous dimension of non-singlet quark currents in the RI′ scheme, Nucl. Phys.B 662 (2003) 247 [hep-ph/0304113] [INSPIRE]. J.A. Gracey, Three loop anomalous dimension of the second moment of the transversity operator in the \( \overline{\mathrm{MS}} \)and RI′ schemes, Nucl. Phys.B 667 (2003) 242 [hep-ph/0306163] [INSPIRE]. J.A. Gracey, Two loop renormalization of the n = 2 Wilson operator in the RI′/SMOM scheme, JHEP03 (2011) 109 [arXiv:1103.2055] [INSPIRE]. J.A. Gracey, RI′/SMOM scheme amplitudes for quark currents at two loops, Eur. Phys. J.C 71 (2011) 1567 [arXiv:1101.5266] [INSPIRE]. J.A. Gracey, Amplitudes for the n = 3 moment of the Wilson operator at two loops in the RI′/SMOM scheme, Phys. Rev.D 84 (2011) 016002 [arXiv:1105.2138] [INSPIRE]. ALPHA collaboration, QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter, Phys. Rev. Lett.119 (2017) 102001 [arXiv:1706.03821] [INSPIRE]. B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys.B 259 (1985) 572 [INSPIRE]. J. Bulava and S. Schaefer, Improvement of N f= 3 lattice QCD with Wilson fermions and tree-level improved gauge action, Nucl. Phys.B 874 (2013) 188 [arXiv:1304.7093] [INSPIRE]. P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory (I), Nucl. Phys.B 212 (1983) 1 [INSPIRE]. Y. Nakamura and H. Stüben, BQCD — Berlin quantum chromodynamics program, PoS(LATTICE 2010) 040 [arXiv:1011.0199] [INSPIRE]. RQCD collaboration, Lattice simulations with N f= 2 + 1 improved Wilson fermions at a fixed strange quark mass, Phys. Rev.D 94 (2016) 074501 [arXiv:1606.09039] [INSPIRE]. M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles, Phys. Rev.D 95 (2017) 074504 [arXiv:1608.08900] [INSPIRE]. M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE]. J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett.B 184 (1987) 83 [INSPIRE]. J. Gasser and H. Leutwyler, Spontaneously broken symmetries: Effective lagrangians at finite volume, Nucl. Phys.B 307 (1988) 763 [INSPIRE]. J.-W. Chen and I.W. Stewart, Model-Independent Results for SU(3) Violation in Light-Cone Distribution Functions, Phys. Rev. Lett.92 (2004) 202001 [hep-ph/0311285] [INSPIRE]. V.M. Braun et al., Distribution amplitudes of pseudoscalar mesons, PoS(LAT2006) 122 (2006) [hep-lat/0610055] [INSPIRE]. P.A. Boyle et al., The first moment of the Kaon distribution amplitude from N f= 2 + 1 Domain Wall Fermions, PoS(LAT2006) 111 (2006) [hep-lat/0610025] [INSPIRE]. UKQCD collaboration, A lattice computation of the first moment of the kaon’s distribution amplitude, Phys. Lett.B 641 (2006) 67 [hep-lat/0607018] [INSPIRE]. M.A. Donnellan et al., Lattice results for vector meson couplings and parton distribution amplitudes, PoS(LATTICE 2007) 369 [arXiv:0710.0869] [INSPIRE]. V.M. Braun et al., Pion Distribution Amplitude from Lattice QCD, PoS(QCDEV2015) 009 [arXiv:1510.07429] [INSPIRE]. A.P. Bakulev, S.V. Mikhailov and N.G. Stefanis, Unbiased analysis of CLEO data at NLO and the pion distribution amplitude, Phys. Rev.D 67 (2003) 074012 [hep-ph/0212250] [INSPIRE]. CLEO collaboration, Measurements of the meson-photon transition form factors of light pseudoscalar mesons at large momentum transfer, Phys. Rev.D 57 (1998) 33 [hep-ex/9707031] [INSPIRE]. A. Khodjamirian, Th. Mannel and M. Melcher, Kaon distribution amplitude from QCD sum rules, Phys. Rev.D 70 (2004) 094002 [hep-ph/0407226] [INSPIRE]. P. Ball, V.M. Braun and A. Lenz, Higher-twist distribution amplitudes of the K meson in QCD, JHEP05 (2006) 004 [hep-ph/0603063] [INSPIRE]. A.P. Bakulev and S.V. Mikhailov, The ρ-meson and related meson wave functions in QCD sum rules with nonlocal condensates, Phys. Lett.B 436 (1998) 351 [hep-ph/9803298] [INSPIRE]. A. Schmedding and O.I. Yakovlev, Perturbative effects in the form factor γγ ∗→ π 0and extraction of the pion distribution amplitude from CLEO data, Phys. Rev.D 62 (2000) 116002 [hep-ph/9905392] [INSPIRE]. S.S. Agaev, Impact of the higher twist effects on the γγ ∗→ π 0transition form factor, Phys. Rev.D 72 (2005) 114010 [Erratum ibid. D 73 (2006) 059902(E)] [hep-ph/0511192] [INSPIRE]. S.S. Agaev, V.M. Braun, N. Offen and F.A. Porkert, Belle data on the π 0γ ∗γ form factor: A game changer?, Phys. Rev.D 86 (2012) 077504 [arXiv:1206.3968] [INSPIRE]. J. Bijnens and A. Khodjamirian, Exploring light-cone sum rules for pion and kaon form factors, Eur. Phys. J.C 26 (2002) 67 [hep-ph/0206252] [INSPIRE]. S.S. Agaev, Higher twist distribution amplitudes of the pion and electromagnetic form factor F π (Q 2), Phys. Rev.D 72 (2005) 074020 [hep-ph/0509345] [INSPIRE]. P. Ball and R. Zwicky, |V ub| and constraints on the leading-twist pion distribution amplitude from B → πℓν, Phys. Lett.B 625 (2005) 225 [hep-ph/0507076] [INSPIRE]. G. Duplančić, A. Khodjamirian, Th. Mannel, B. Melić and N. Offen, Light-cone sum rules for B → π form factors revisited, JHEP04 (2008) 014 [arXiv:0801.1796] [INSPIRE]. P. Ball and R. Zwicky, SU(3) breaking of leading-twist K and K ∗distribution amplitudes — a reprise, Phys. Lett.B 633 (2006) 289 [hep-ph/0510338] [INSPIRE]. P. Ball and R. Zwicky, Operator relations for SU(3) breaking contributions to K and K ∗distribution amplitudes, JHEP02 (2006) 034 [hep-ph/0601086] [INSPIRE]. K.G. Chetyrkin, A. Khodjamirian and A.A. Pivovarov, Towards NNLO accuracy in the QCD sum rule for the kaon distribution amplitude, Phys. Lett.B 661 (2008) 250 [arXiv:0712.2999] [INSPIRE]. C. Shi, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy and H.-s. Zong, Flavour symmetry breaking in the kaon parton distribution amplitude, Phys. Lett.B 738 (2014) 512 [arXiv:1406.3353] [INSPIRE]. V. Braun and D. Müller, Exclusive processes in position space and the pion distribution amplitude, Eur. Phys. J.C 55 (2008) 349 [arXiv:0709.1348] [INSPIRE]. J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin and H.-W. Lin, Pion distribution amplitude from lattice QCD, Phys. Rev.D 95 (2017) 094514 [arXiv:1702.00008] [INSPIRE]. G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions, Eur. Phys. J.C 78 (2018) 217 [arXiv:1709.04325] [INSPIRE]. G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher-twist effects, Phys. Rev.D 98 (2018) 094507 [arXiv:1807.06671] [INSPIRE]. A.V. Radyushkin, Pion distribution amplitude and quasidistributions, Phys. Rev.D 95 (2017) 056020 [arXiv:1701.02688] [INSPIRE]. LP3 collaboration, Kaon distribution amplitude from lattice QCD and the flavor SU(3) symmetry, Nucl. Phys.B 939 (2019) 429 [arXiv:1712.10025] [INSPIRE]. W. Detmold, I. Kanamori, C.-J.D. Lin, S. Mondal and Y. Zhao, Moments of pion distribution amplitude using operator product expansion on the lattice, PoS(LATTICE2018) 106 [arXiv:1810.12194] [INSPIRE]. Jülich Supercomputing Centre, JURECA: Modular supercomputer at Jülich Supercomputing Centre, JLSRF4 (2018) A132. P. Arts et al., QPACE 2 and Domain Decomposition on the Intel Xeon Phi, PoS(LATTICE2014) 021 (2015) [arXiv:1502.04025] [INSPIRE]. SciDAC, LHPC and UKQCD collaborations, The Chroma Software System for Lattice QCD, Nucl. Phys. B Proc. Suppl.140 (2005) 832 [hep-lat/0409003] [INSPIRE]. A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, Adaptive Aggregation-Based Domain Decomposition Multigrid for the Lattice Wilson-Dirac Operator, SIAM J. Sci. Comput.36 (2014) A1581 [arXiv:1303.1377] [INSPIRE]. S. Heybrock, M. Rottmann, P. Georg and T. Wettig, Adaptive algebraic multigrid on SIMD architectures, PoS(LATTICE 2015) 036 (2016) [arXiv:1512.04506] [INSPIRE]. P. Georg, D. Richtmann and T. Wettig, DD-αAMG on QPACE 3, EPJ Web Conf.175 (2018) 02007 [arXiv:1710.07041] [INSPIRE].