In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces

A. H. Dur1,2, T. Tang3, S. Viviano4,1, A. Sekuri2, H. R. Willsey5, H. D. Tagare3, K. T. Kahle1,6, E. Deniz4,1
1Department of Pediatrics, Yale University School of Medicine, New Haven, USA
2Acıbadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
3Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
4Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, USA
5Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
6Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, Yale University School of Medicine, New Haven, USA

Tóm tắt

Hydrocephalus, the pathological expansion of the cerebrospinal fluid (CSF)-filled cerebral ventricles, is a common, deadly disease. In the adult, cardiac and respiratory forces are the main drivers of CSF flow within the brain ventricular system to remove waste and deliver nutrients. In contrast, the mechanics and functions of CSF circulation in the embryonic brain are poorly understood. This is primarily due to the lack of model systems and imaging technology to study these early time points. Here, we studied embryos of the vertebrate Xenopus with optical coherence tomography (OCT) imaging to investigate in vivo ventricular and neural development during the onset of CSF circulation. Optical coherence tomography (OCT), a cross-sectional imaging modality, was used to study developing Xenopus tadpole brains and to dynamically detect in vivo ventricular morphology and CSF circulation in real-time, at micrometer resolution. The effects of immobilizing cilia and cardiac ablation were investigated. In Xenopus, using OCT imaging, we demonstrated that ventriculogenesis can be tracked throughout development until the beginning of metamorphosis. We found that during Xenopus embryogenesis, initially, CSF fills the primitive ventricular space and remains static, followed by the initiation of the cilia driven CSF circulation where ependymal cilia create a polarized CSF flow. No pulsatile flow was detected throughout these tailbud and early tadpole stages. As development progressed, despite the emergence of the choroid plexus in Xenopus, cardiac forces did not contribute to the CSF circulation, and ciliary flow remained the driver of the intercompartmental bidirectional flow as well as the near-wall flow. We finally showed that cilia driven flow is crucial for proper rostral development and regulated the spatial neural cell organization. Our data support a paradigm in which Xenopus embryonic ventriculogenesis and rostral brain development are critically dependent on ependymal cilia-driven CSF flow currents that are generated independently of cardiac pulsatile forces. Our work suggests that the Xenopus ventricular system forms a complex cilia-driven CSF flow network which regulates neural cell organization. This work will redirect efforts to understand the molecular regulators of embryonic CSF flow by focusing attention on motile cilia rather than other forces relevant only to the adult.

Từ khóa


Tài liệu tham khảo

Raimondi AJ. A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst. 1994;10(1):2–12.

Rekate HL. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res. 2008;5:2.

Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8(1):5.

Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):4878.

Dreha-Kulaczewski S, Konopka M, Joseph AA, Kollmeier J, Merboldt KD, Ludwig HC, et al. Respiration and the watershed of spinal CSF flow in humans. Sci Rep. 2018;8(1):5594.

Chau KF, Springel MW, Broadbelt KG, Park HY, Topal S, Lun MP, et al. Progressive differentiation and instructive capacities of amniotic fluid and cerebrospinal fluid proteomes following neural tube closure. Dev Cell. 2015;35(6):789–802.

Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011;69(5):893–905.

Schwarz N, Hedrich UBS, Schwarz H, Harshad PA, Dammeier N, Auffenberg E, et al. Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci Rep. 2017;7(1):12249.

Ting JT, Kalmbach B, Chong P, de Frates R, Keene CD, Gwinn RP, et al. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep. 2018;8(1):8407.

Fame RM, Lehtinen MK. Emergence and developmental roles of the cerebrospinal fluid system. Dev Cell. 2020;52(3):261–75.

Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron. 2018;99(2):302–14.

Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006;311(5761):629–32.

Siyahhan B, Knobloch V, de Zelicourt D, Asgari M, Schmid Daners M, Poulikakos D, et al. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface. 2014;11(94):20131189.

Kurtcuoglu V, Soellinger M, Summers P, Poulikakos D, Boesiger P. Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. J Biomech Eng. 2007;129(5):695–702.

Sweetman B, Linninger AA. Cerebrospinal fluid flow dynamics in the central nervous system. Ann Biomed Eng. 2011;39(1):484–96.

Sweetman B, Xenos M, Zitella L, Linninger AA. Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Comput Biol Med. 2011;41(2):67–75.

Stadlbauer A, Salomonowitz E, van der Riet W, Buchfelder M, Ganslandt O. Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. Neuroimage. 2010;51(1):42–52.

Howden L, Giddings D, Power H, Aroussi A, Vloeberghs M, Garnett M, et al. Three-dimensional cerebrospinal fluid flow within the human ventricular system. Comput Methods Biomech Biomed Engin. 2008;11(2):123–33.

Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1–23.

Fame RM, Chang JT, Hong A, Aponte-Santiago NA, Sive H. Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids Barriers CNS. 2016;13(1):11.

Olstad EW, Ringers C, Hansen JN, Wens A, Brandt C, Wachten D, et al. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr Biol. 2019;29(2):229–41.

Thouvenin O, Keiser L, Cantaut-Belarif Y, Carbo-Tano M, Verweij F, Jurisch-Yaksi N, et al. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. Elife. 2020;9:e47699.

Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci. 2010;123(Pt 4):511–8.

Youn YH, Han YG. Primary cilia in brain development and diseases. Am J Pathol. 2018;188(1):11–22.

Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res. 2013;91(9):1117–32.

Ohata S, Alvarez-Buylla A. Planar organization of multiciliated ependymal (E1) cells in the brain ventricular epithelium. Trends Neurosci. 2016;39(8):543–51.

Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, et al. Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol. 2010;12(4):341–50.

Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida YS, et al. Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development. 2010;137(18):3037–46.

Mirzadeh Z, Han YG, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Cilia organize ependymal planar polarity. J Neurosci. 2010;30(7):2600–10.

Hagiwara H, Ohwada N, Takata K. Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int Rev Cytol. 2004;234:101–41.

Louvi A, Grove EA. Cilia in the CNS: the quiet organelle claims center stage. Neuron. 2011;69(6):1046–60.

Faubel R, Westendorf C, Bodenschatz E, Eichele G. Cilia-based flow network in the brain ventricles. Science. 2016;353(6295):176–8.

Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132(23):5329–39.

Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, et al. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Sci Rep. 2019;9(1):6196.

Wallmeier J, Frank D, Shoemark A, Nothe-Menchen T, Cindric S, Olbrich H, et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet. 2019;105(5):1030–9.

Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2(1–2):9–25.

Boppart SA, Brezinski ME, Fujimoto JG. Optical coherence tomography imaging in developmental biology. Methods Mol Biol. 2000;135:217–33.

Gutierrez-Chico JL, Alegria-Barrero E, Teijeiro-Mestre R, Chan PH, Tsujioka H, de Silva R, et al. Optical coherence tomography: from research to practice. Eur Heart J Cardiovasc Imaging. 2012;13(5):370–84.

Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1(9):970–2.

del Viso F, Khokha M. Generating diploid embryos from Xenopus tropicalis. Methods Mol Biol. 2012;917:33–41.

Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J, et al. Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn. 2002;225(4):499–510.

Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TS, Kim SK, et al. c21orf59/kurly controls both cilia motility and polarization. Cell Rep. 2016;14(8):1841–9.

Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. New York: Garland Pub.; 1994. 252 p., 10 leaves of plates p.

Tang T, Deniz E, Khokha MK, Tagare HD. Gaussian process post-processing for particle tracking velocimetry. Biomed Opt Express. 2019;10(7):3196–216.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.

Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7–8):518–29.

Willsey HR, Xu Y, Everitt A, Dea J, Exner CRT, Willsey AJ, et al. The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos. Development. 2020;147(21):dev189290.

Willsey HR, Walentek P, Exner CRT, Xu Y, Lane AB, Harland RM, et al. Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos. Dev Biol. 2018;442(2):276–87.

Adalis D, Gardner DE, Miller FJ. Cytotoxic effects of nickel on ciliated epithelium. Am Rev Respir Dis. 1978;118(2):347–54.

Gabridge MG, Dougherty EP, Gladd MF, Meccoli RA. Effects of heavy metals on structure, function, and metabolism of ciliated respiratory epithelium in vitro. Vitro. 1982;18(12):1023–32.

Olsen I, Jonsen J. Effect of cadmium acetate, copper sulphate and nickel chloride on organ cultures of mouse trachea. Acta Pharmacol Toxicol. 1979;44(2):120–7.

Mohun TJ, Leong LM, Weninger WJ, Sparrow DB. The morphology of heart development in Xenopus laevis. Dev Biol. 2000;218(1):74–88.

Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: an emerging model for studying congenital heart disease. Birth Defects Res A Clin Mol Teratol. 2011;91(6):495–510.

Abu-Daya A, Sater AK, Wells DE, Mohun TJ, Zimmerman LB. Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol. 2009;336(1):20–9.

Mukhopadhyay AG, Dey CS. Effect of inhibition of axonemal dynein ATPases on the regulation of flagellar and ciliary waveforms in Leishmania parasites. Mol Biochem Parasitol. 2018;225:27–37.

Anderson SA, Purich DL. A reinvestigation of dynein ATPase kinetics and the inhibitory action of vanadate. J Biol Chem. 1982;257(12):6656–8.

Nelson DJ, Wright EM. The distribution, activity, and function of the cilia in the frog brain. J Physiol. 1974;243(1):63–78.

Gona AG, Hauser KF. Ultrastructural studies on the ventricular surface of the frog cerebellum. Cell Tissue Res. 1982;225(2):443–8.

Hagenlocher C, Walentek P, Ller CM, Thumberger T, Feistel K. Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia. 2013;2(1):12.

Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, et al. Emx1 and Emx2 functions in development of dorsal telencephalon. Development. 1997;124(1):101–11.

Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M, Boncinelli E. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J. 1992;11(7):2541–50.

Lupo G, Harris WA, Barsacchi G, Vignali R. Induction and patterning of the telencephalon in Xenopus laevis. Development. 2002;129(23):5421–36.

Alexandre P, Wassef M. The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development. 2003;130(22):5331–8.

Nakamura H, Katahira T, Matsunaga E, Sato T. Isthmus organizer for midbrain and hindbrain development. Brain Res Brain Res Rev. 2005;49(2):120–6.

Scholpp S, Wolf O, Brand M, Lumsden A. Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development. 2006;133(5):855–64.

Sena E, Feistel K, Durand BC. An evolutionarily conserved network mediates development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center. J Dev Biol. 2016;4(4):31.

Hukriede NA, Tsang TE, Habas R, Khoo PL, Steiner K, Weeks DL, et al. Conserved requirement of Lim1 function for cell movements during gastrulation. Dev Cell. 2003;4(1):83–94.

Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, et al. Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol. 2000;223(1):77–90.

Shawlot W, Wakamiya M, Kwan KM, Kania A, Jessell TM, Behringer RR. Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development. 1999;126(22):4925–32.

Yasuoka Y, Kobayashi M, Kurokawa D, Akasaka K, Saiga H, Taira M. Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3. Development. 2009;136(12):2005–14.

McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL. Mechanistic insights from the LHX1-driven molecular network in building the embryonic head. Dev Growth Differ. 2019;61(5):327–36.

Hemmati-Brivanlou A, de la Torre JR, Holt C, Harland RM. Cephalic expression and molecular characterization of Xenopus En-2. Development. 1991;111(3):715–24.

Currie SP, Combes D, Scott NW, Simmers J, Sillar KT. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles. J Neurophysiol. 2016;115(3):1446–57.

Hanzi S, Straka H. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles. J Exp Biol. 2017;220(Pt 2):227–36.

Puelles L, Rubenstein JL. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 1993;16(11):472–9.

Milan FJ, Puelles L. Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon. J Comp Neurol. 2000;419(1):96–121.

Figdor MC, Stern CD. Segmental organization of embryonic diencephalon. Nature. 1993;363(6430):630–4.

Wullimann MF, Puelles L. Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat Embryol (Berl). 1999;199(4):329–48.

Bachy I, Vernier P, Retaux S. The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain. J Neurosci. 2001;21(19):7620–9.