Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine‐induced amnesia in rats

Jessié M. Gutierres1, Fabiano B. Carvalho2, Maria Rosa C. Schetinger1, Paula Agostinho3, Patricia C. Marisco1, Juliano M. Vieira1, Michele M. Rosa1, Crystiani Bohnert1, Maribel A. Rubin1, Vera M. Morsch1, Roselia Spanevello4, Cinthia M. Mazzanti2
1Departamento de Química, Centro de Ciências Naturais e Exatas Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
2Setor de Bioquímica e Biologia Molecular do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
3Center for Neuroscience and Cell Biology, Faculty of Medicine, Biochemistry Institute, University of Coimbra, 3004 Coimbra, Portugal
4Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, Pelotas RS 96010-900, Brazil

Tóm tắt

AbstractAnthocyanins are a group of natural phenolic compounds responsible for the color to plants and fruits. These compounds might have beneficial effects on memory and have antioxidant properties. In the present study we have investigated the therapeutic efficacy of anthocyanins in an animal model of cognitive deficits, associated to Alzheimer's disease, induced by scopolamine. We evaluated whether anthocyanins protect the effects caused by SCO on nitrite/nitrate (NOx) levels and Na+,K+‐ATPase and Ca2+‐ATPase and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus (of rats. We used 4 different groups of animals: control (CTRL), anthocyanins treated (ANT), scopolamine‐challenged (SCO), and scopolamine + anthocyanins (SCO + ANT). After seven days of treatment with ANT (200 mg kg−1; oral), the animals were SCO injected (1 mg kg−1; IP) and were performed the behavior tests, and submitted to euthanasia. A memory deficit was found in SCO group, but ANT treatment prevented this impairment of memory (P < 0.05). The ANT treatment per se had an anxiolytic effect. AChE activity was increased in both in cortex and hippocampus of SCO group, this effect was significantly attenuated by ANT (P < 0.05). SCO decreased Na+,K+‐ATPase and Ca2+‐ATPase activities in hippocampus, and ANT was able to significantly (P < 0.05) prevent these effects. No significant alteration was found on NOx levels among the groups. In conclusion, the ANT is able to regulate cholinergic neurotransmission and restore the Na+,K+‐ATPase and Ca2+‐ATPase activities, and also prevented memory deficits caused by scopolamine administration.

Tài liệu tham khảo

10.1016/j.fitote.2011.01.016 10.1101/lm.7.1.58 10.1080/10284150500078117 10.1042/bst0220749 10.1038/252595a0 10.1007/s00439-009-0673-2 10.1016/j.pbb.2006.05.001 10.1212/01.wnl.0000249116.50854.65 10.1016/S0166-4328(01)00291-1 10.1016/j.nlm.2004.07.004 10.1096/fj.08-121459 10.1016/0022-510X(94)90202-X 10.1016/0304-3940(90)90835-W 10.1016/0165-0173(95)00016-X 10.1016/0003-2697(76)90527-3 10.1016/S0006-8993(98)00267-4 10.1016/S0014-2999(98)00487-7 10.1196/annals.1386.051 10.1016/j.ejphar.2012.03.046 10.1046/j.1471-4159.2003.01985.x 10.1007/s12272-012-0719-1 Christensen H., 1992, Cholinergic ‘blockade’ as a model of the cognitive deficits in Alzheimer's disease, Brain, 115, 1681, 10.1093/brain/115.6.1681 10.1111/j.1440-1681.2011.05590.x Del Rio D., 2010, Berry flavonoids and phenolics: bioavailability and evidence of protective effects, Br. J. Nutr., 104, S67, 10.1017/S0007114510003958 10.1111/j.1749-6632.1991.tb17294.x 10.1111/j.1559-4564.2007.06673.x 10.1016/S0006-8993(02)03077-9 10.1016/j.neurobiolaging.2007.04.002 10.1021/jf201116y 10.1016/0006-2952(61)90145-9 10.1016/j.pbb.2003.09.014 10.1016/S0034-5687(01)00306-1 10.1007/s10863-009-9243-5 10.1126/science.65.1686.401 10.1021/jf025716n 10.1007/s002130051157 10.1254/jjp.15.327 10.1097/00041552-199709000-00005 10.1016/j.biocel.2012.09.016 10.1007/BF02463045 10.1016/0920-1211(92)90034-Q 10.1016/j.neurobiolaging.2004.12.005 10.1016/j.biomag.2012.03.004 10.1016/j.lfs.2012.09.013 10.1002/cbf.2797 10.1016/j.lfs.2013.11.014 10.1016/S0304-3940(98)00654-5 10.1016/j.neurobiolaging.2007.12.005 10.1038/jcbfm.1988.110 10.1016/j.bbr.2010.11.039 10.2174/1381612043386509 10.1016/0165-6147(89)90231-9 10.1016/j.ejphar.2008.04.015 10.1146/annurev.physiol.65.092101.142558 10.1021/jf025551i 10.1021/jf010152t 10.1146/annurev.biochem.71.102201.141218 10.1016/S0301-0082(97)00028-2 10.1017/S0007114510000218 Kirvela O.A., 1994, Anticholinergic drugs: effects on oxygen consumption and energy expenditure, Anesth. Analg., 78, 995 10.1016/j.neubiorev.2010.04.001 Kodavanti P.R., 1999, Measurement of calcium buffering by intracellular organelles in brain, Methods Mol. Med., 22, 171 Kopelman M.D., 1988, Cholinergic ‘blockade’ as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer‐type dementia and the alcoholic Korsakoff syndrome, Brain, 111, 1079 10.1179/147683010X12611460764084 10.1021/jf9029332 10.1021/jf300277g Lacor P.N., 2007, Advances on the understanding of the origins of synaptic pathology in AD, Curr. Genomics, 8, 486, 10.2174/138920207783769530 10.1017/S1461145705005833 10.1016/0304-3940(90)90027-7 10.1007/s10863-007-9107-9 10.1016/j.atherosclerosis.2007.08.002 Malatova Z., 1980, Acetylcholinesterase activity and its molecular forms in selected regions of the dog's nervous system, Physiol. Bohemoslov., 29, 415 10.1093/ajcn/79.5.727 10.1007/s11064-013-1072-6 10.4331/wjbc.v1.i7.229 10.1042/BST0390819 10.1021/jf001246q 10.1007/s11064-006-9112-0 10.1021/jf026206w 10.2174/156720507781788891 10.1016/0304-3940(90)90407-Z 10.1016/S0021-9258(18)32378-0 10.1016/j.neulet.2011.05.048 10.1006/niox.2000.0319 10.1021/jf9809582 10.1523/JNEUROSCI.4464-06.2007 10.1089/jmf.2011.0129 10.2174/092986707782023217 10.1111/j.1471-4159.1984.tb12851.x Nishizuka T., 2011, Procyanidins are potent inhibitors of LOX‐1: a new player in the French Paradox, Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci., 87, 104, 10.2183/pjab.87.104 10.1016/j.semcancer.2007.12.009 10.1038/nn.2583 10.1016/j.ab.2004.03.025 Pavlov K.V., 2000, Electrogenic ion transport by Na+,K+‐ATPase, Membr. Cell Biol., 13, 745 10.1016/j.phrs.2005.07.003 Rang Oh S., 2013, Angelica keiskei ameliorates scopolamine‐induced memory impairments in mice, Biol. Pharm. Bull., 36, 82, 10.1248/bpb.b12-00681 10.1016/0028-3908(92)90017-J 10.1016/0006-2952(93)90530-A 10.1093/clinchem/40.9.1674 10.1590/S0100-879X2000000900013 10.1097/00008877-200002000-00006 Saija A., 1990, Effect of Vaccinium myrtillus anthocyanins on triiodothyronine transport into brain in the rat, Pharmacol. Res., 22, 59, 10.1016/S1043-6618(09)80029-7 10.1016/S0304-3940(98)00244-4 10.1016/j.exger.2007.06.008 10.1093/jn/130.8.2073S 10.1586/14737175.3.5.619 10.1016/S1474-4422(03)00502-7 10.1111/j.1460-9568.2006.05257.x 10.1016/j.mehy.2004.02.032 10.1016/j.jnutbio.2009.03.008 10.1007/BF00768846 Southam E., 1991, Experimental vitamin E deficiency in rats. Morphological and functional evidence of abnormal axonal transport secondary to free radical damage, Brain, 114, 915 10.1037/0735-7044.105.2.264 10.1152/ajpcell.2000.279.3.C541 10.1021/np800377y 10.1097/gme.0b013e3181847619 10.1039/b718040n 10.1016/j.mce.2011.08.039 10.1016/j.canlet.2008.05.020 10.1111/j.1749-6632.1991.tb00231.x 10.1039/b311404j 10.1523/JNEUROSCI.22-04-01350.2002 10.1039/c2ib20042b 10.1039/b800165k 10.1046/j.1471-4159.2003.01652.x 10.4331/wjbc.v1.i9.271 10.1111/j.1471-4159.1985.tb03999.x