Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest
Tóm tắt
Từ khóa
Tài liệu tham khảo
Araguas-Araguas, L., Froehlich, K., and Rozanski, K.: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture, Hydrol. Process., 14, 1341–1355, 2000.
Aravena, R., Suzuki, O., Pena, H., Pollastri, A., Fuenzalida, H., and Grilli, A.: Isotopic composition and origin of the precipitation in Northern Chile, Appl. Geochem., 14, 411–422, 1999.
Barthold, F. K., Tyralla, C., Schneider, K., Vache, K. B., Frede, H.-G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resour. Res., 47, W08519, https://doi.org/10.1029/2011WR010604, 2011.
Bendix, J., Homeier, J., Cueva Ortiz, E., Emck, P., Breckle, S.-W., Richter, M., and Beck, E.: Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest, Int. J. Biometeorol., 50, 370–384, https://doi.org/10.1007/s00484-006-0029-8, 2006.
Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P.: Climate, in: Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by: Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., Springer, Berlin, 63–73, 2008.
Birkel, C., Dunn, S. M., Tetzlaff, D., and Soulsby, C.: Assessing the added value of high-resolution isotope tracer data in rainfall-runoff modelling, Hydrol. Earth Syst. Sci. Discuss., 6, 6207–6246, https://doi.org/10.5194/hessd-6-6207-2009, 2009.
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations, J. Geophys. Res., 113, D19305, https://doi.org/10.1029/2008JD009942, 2008.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res., 39, 1299, https://doi.org/10.1029/2003WR002086, 2003.
Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., and Haug, G. H.: Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India, Earth Planet. Sc. Lett., 292, 212–220, https://doi.org/10.1016/j.epsl.2010.01.038, 2010.
Bücker, A., Crespo, P., Frede, H.-G., Vaché, K., Cisneros, F., Breuer, L.: Identifying Controls on Water Chemistry of Tropical Cloud Forest Catchments: Combining Descriptive Approaches and Multivariate Analysis, Aquat. Geochem., 16, 127–149, 2010.
Cortés, A., Durazo, J., and Farvolden, R. N.: Studies of isotopic hydrology of the basin of Mexico and vicinity: annotated bibliography and interpretation, J. Hydrol., 198, 346–376, https://doi.org/10.1016/S0022-1694(96)03273-8, 1997.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961a.
Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters, Science, 133, 1833–1834, https://doi.org/10.1126/science.133.3467.1833, 1961b.
Crespo, P., Bücker, A., Feyen, J., Vaché, K. B., Frede, H., and Breuer, L.: Preliminary evaluation of the runoff processes in a remote montane cloud forest basin using Mixing Model Analysis and Mean Transit Time, Hydrol. Process., 26, 3896–3910, https://doi.org/10.1002/hyp.8382, 2012.
Darling, W. G. and Talbot, J. C.: The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall, Hydrol. Earth Syst. Sci., 7, 163–181, https://doi.org/10.5194/hess-7-163-2003, 2003.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, access via NOAA ARL READY website: http://ready.arl.noaa.gov/HYSPLIT.php, last access: 27 September 2012, NOAA Air Resources Laboratory, Silver Spring, MD, 2012.
Emck, P.: A climatology of south Ecuador – with special focus on the major Andean ridge as Atlantic–Pacific climate divide, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2007.
Emck, P. and Richter, M.: An Upper Threshold of Enhanced Global Shortwave Irradiance in the Troposphere Derived from Field Measurements in Tropical Mountains, J. Appl. Meteorol. Clim., 47, 2828–2845, https://doi.org/10.1175/2008JAMC1861.1, 2008.
Feng, X., Faiia, A. M., and Posmentier, E. S.: Seasonality of isotopes in precipitation: A global perspective, J. Geophys. Res., 114, D08116, https://doi.org/10.1029/2008JD011279, 2009.
Froehlich, K., Gibson, J. J., and Aggarwal, P.: Deuterium excess in precipitation and its climatological significance, in: Study of Environmental Change Using Isotope Techniques, International Atomic Energy Agency, Vienna, 54–66, 2002.
Garcia, M., Villalba, F., Araguas-Araguas, L., and Rozanski, K.: The role of atmospheric circulation patterns in controlling the regional distribution of stable isotope contents in precipitation: Preliminary results from two transects in the Ecuadorian Andes, in: Isotope Techniques in the Study of Environmental Change, International Atomic Energy Agency, Vienna, 127–140, 1998.
Garvelmann, J., Külls, C., and Weiler, M.: A porewater-based stable isotope approach for the investigation of subsurface hydrological processes, Hydrol. Earth Syst. Sci., 16, 631–640, https://doi.org/10.5194/hess-16-631-2012, 2012.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet Sci., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Gat, J. R.: Atmospheric water balance – the isotopic perspective, Hydrol. Process., 14, 1357–1369, 2000.
Gat, J. R., Mook, W. G. and Meijer, H.: Environmental isotopes in the hydrological cycle, in: Vol. II Atmospheric Water, edited by: Mook, W., International Atomic Energy Agency, Groningen, 2000.
Göttlicher, D., Obregón, A., Homeier, J., Rollenbeck, R., Nauss, T., and Bendix, J.: Land-cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling, Int. J. Remote Sens., 30, 1867–1886, https://doi.org/10.1080/01431160802541531, 2009.
Goller, R., Wilcke, W., Leng, M. J., Tobschall, H. J., Wagner, K., Valarezo, C., and Zech, W.: Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach, J. Hydrol., 308, 67–80, https://doi.org/10.1016/j.jhydrol.2004.10.022, 2005.
Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C., and Zuppi, G. M.: The altitude effect on the isotopic composition of tropical rains, Chem. Geol., 181, 147–167, https://doi.org/10.1016/S0009-2541(01)00279-0, 2001.
Henderson-Sellers, A., McGuffie, K., and Zhang, H.: Stable isotopes as validation tools for global climate model predictions of the impact of Amazonian deforestation, J. Climate, 15, 2664–2677, 2002.
Hou, S., Masson-Delmotte, V., Qin, D., and Jouzel, J.,: Modern precipitation stable isotope vs. elevation gradients in the High Himalaya. Comment on "A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene" by David B. Rowley et al. [Earth Planet. Sci. Lett. 188 (2001) 253–268], Earth Planet. Sc. Lett., 209, 395–399, https://doi.org/10.1016/S0012-821X(03)00043-8, 2003.
IAEA: Water Resources Programme – Global Network of Isotopes in Precipitation: http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html, last access: 10 February 2012.
Kabeya, N., Katsuyama, M., Kawasaki, M., Ohte, N., and Sugimoto, A.: Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan, Hydrol. Process., 21, 308–322, https://doi.org/10.1002/hyp.6231, 2007.
Kattan, Z.: Characterization of surface water and groundwater in the Damascus Ghotta basin: hydrochemical and environmental isotopes approaches, Environ. Geol., 51, 173–201, https://doi.org/10.1007/s00254-006-0316-z, 2006.
Kebede, S. and Travi, Y.: Origin of the δ18O and δ2H composition of meteoric waters in Ethiopia, Quatern. Int., 257, 4–12, https://doi.org/10.1016/j.quaint.2011.09.032, 2011.
Koivusalo, H., Karvonen, T., and Lepistö, A.: A quasi-three-dimensional model for predicting rainfall-runoff processes in a forested catchment in Southern Finland, Hydrol. Earth Syst. Sci., 4, 65–78, https://doi.org/10.5194/hess-4-65-2000, 2000.
Lachniet, M. S. and Patterson, W. P.: Use of correlation and stepwise regression to evaluate physical controls on the stable isotope values of Panamanian rain and surface waters, J. Hydrol., 324, 115–140, https://doi.org/10.1016/j.jhydrol.2005.09.018, 2006.
Lachniet, M. S. and Patterson, W. P.: Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects, Earth Planet. Sc. Lett., 284, 435–446, https://doi.org/10.1016/j.epsl.2009.05.010, 2009.
Lee, J. E., Johnson, K., and Fung, I.: Precipitation over South America during the Last Glacial Maximum: An analysis of the "amount effect" with a water isotope-enabled general circulation model, Geophys. Res. Lett., 36, L19701, https://doi.org/10.1029/2009GL039265, 2009.
LGR: Los Gatos Research: http://www.lgrinc.com/, last access: 10 April 2012.
Liebminger, A., Haberhauer, G., Papesch, W., and Heiss, G.: Footprints of climate in groundwater and precipitation, Hydrol. Earth Syst. Sci., 11, 785–791, https://doi.org/10.5194/hess-11-785-2007, 2007.
Liu, W. J., Liu, W. Y., Li, P. J., Gao, L., Shen, Y. X., Wang, P. Y., Zhang, Y. P., and Li, H. M.: Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China, Agr. Forest Meteorol., 143, 80–91, https://doi.org/10.1016/j.agrformet.2006.11.009, 2007.
Martinelli, L. A., Victoria, R. L., Silveira Lobo Sternberg, L., Ribeiro, A., and Zacharias Moreira, M.: Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin, J. Hydrol., 183, 191–204, https://doi.org/10.1016/0022-1694(95)02974-5, 1996.
McGuire, K., DeWalle, D., and Gburek, W.: Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians, J. Hydrol., 261, 132–149, https://doi.org/10.1016/S0022-1694(02)00006-9, 2002.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., and Seibert, J.: The role of topography on catchment-scale water residence time, Water Resour. Res., 41, W05002, https://doi.org/10.1029/2004WR003657, 2005.
Mook, W. G.: Environmental isotopes in the hydrological cycle, in: Vol. I Introduction, edited by: Mook, W. G., International Atomic Energy Agency, Groningen, 2000.
Moser, H. and Stichler, W.: Die Verwendung des Deuterium und Sauerstoff-18 Gehalts bei Hydrologischen Untersuchungen, Geol. Bavarica, 64, 7–35, 1971.
Newman, B., Tanweer, A. and Kurttas, T.: IAEA Standard Operating Procedure for the Liquid-Water Stable Isotope Analyser: http://www-naweb.iaea.org/napc/ih/documents/other/laser_procedure_rev12.PDF (last access: 10 April 2012), 2009.
Njitchoua, R., Sigha-Nkamdjou, L., Dever, L., Marlin, C., Sighomnou, D., and Nia, P.: Variations of the stable isotopic compositions of rainfall events from the Cameroon rain forest, Central Africa, J. Hydrol., 223, 17–26, https://doi.org/10.1016/S0022-1694(99)00087-6, 1999.
Peng, T.-R., Wang, C.-H., Huang, C.-C., Fei, L.-Y., Chen, C.-T. A., and Hwong, J.-L.: Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region, Earth Planet. Sc. Lett., 289, 357–366, https://doi.org/10.1016/j.epsl.2009.11.024, 2010.
Rhodes, A. L., Guswa, A. J., and Newell, S. E.: Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica, Water Resour. Res., 42, W11402, https://doi.org/10.1029/2005WR004535, 2006.
Rietti-Shati, M., Yam, R., Karlen, W., and Shemesh, A.: Stable isotope composition of tropical high-altitude fresh-waters on Mt. Kenya, Equatorial East Africa, Chem. Geol., 166, 341–350, https://doi.org/10.1016/S0009-2541(99)00233-8, 2000.
Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect, J. Geophys. Res., 113, D19306, https://doi.org/10.1029/2008JD009943, 2008a.
Risi, C., Bony, S., Vimeux, F., Descroix, L., Ibrahim, B., Lebreton, E., Mamadou, I., and Sultan, B.: What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign, Geophys. Res. Lett., 35, L24808, https://doi.org/10.1029/2008GL035920, 2008b.
Rodgers, P., Soulsby, C., and Waldron, S.: Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment, Hydrol. Process., 19, 2291–2307, https://doi.org/10.1002/hyp.5677, 2005a.
Rodgers, P., Soulsby, C., Waldron, S., and Tetzlaff, D.: Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment, Hydrol. Earth Syst. Sci., 9, 139–155, https://doi.org/10.5194/hess-9-139-2005, 2005b.
Rollenbeck, R. and Bendix, J.: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations, Atmos. Res., 99, 277–289, https://doi.org/10.1016/j.atmosres.2010.10.018, 2011.
Rollenbeck, R., Bendix, J., and Fabian, P.: Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador, Hydrol. Process., 25, 344–352, https://doi.org/10.1002/hyp.7799, 2011.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate, Science, 258, 981–985, https://doi.org/10.1126/science.258.5084.981, 1992.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic patterns in modern global precipitation, Geophys. Monogr. Ser., 78, 1–36, https://doi.org/10.1029/GM078p0001, 1993.
Salati, E., Dall'Olio, A., Matsui, E., and Gat, J. R.: Recycling of water in the Amazon basin: an isotopic study, Water Resour. Res., 15, 1250–1258, https://doi.org/10.1029/WR015i005p01250, 1979.
Saylor, J. E., Mora, A., Horton, B. K., and Nie, J.: Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera, Geochim. Cosmochim. Acta, 73, 6999–7018, https://doi.org/10.1016/j.gca.2009.08.030, 2009.
Scholl, M. A., Gingerich, S. B., and Tribble, G. W.: The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii, J. Hydrol., 264, 170–184, https://doi.org/10.1016/S0022-1694(02)00073-2, 2002.
Scholl, M. A., Shanley, J. B., Zegarra, J. P., and Coplen, T. B.: The stable isotope amount effect: new insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico, Water Resour. Res., 45, W12407, https://doi.org/10.1029/2008WR007515, 2009.
Scholl, M. A., Eugster, W., and Burkard, R.: Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests, Hydrol. Process., 25, 353–366, https://doi.org/10.1002/hyp.7762, 2011.
Siegenthaler, U. and Oeschger, H.: Correlation of 18O in precipitation with temperature and altitude, Nature, 285, 314–317, https://doi.org/10.1038/285314a0, 1980.
Sturm, C., Hoffmann, G., and Langmann, B.: Simulation of the stable water isotopes in precipitation over South America: Comparing regional to global circulation models, J. Climate, 20, 3730–3750, https://doi.org/10.1175/JCLI4194.1, 2007.
Valletcoulomb, C., Gasse, F., and Sonzogni, C.: Seasonal evolution of the isotopic composition of atmospheric water vapour above a tropical lake: Deuterium excess and implication for water recycling, Geochim. Cosmochim. Acta, 72, 4661–4674, https://doi.org/10.1016/j.gca.2008.06.025, 2008.
Victoria, R. L., Martinelli, L. A., Mortatti, J., and Richey, J.: Mechanisms of Water Recycling in the Amazon Basin: Isotopic Insights, Ambio, 20, 384–387, 1991.
Villacís, M., Vimeux, F., and Taupin, J. D.: Analysis of the climate controls on the isotopic composition of precipitation (δ18O) at Nuevo Rocafuerte, 74.5° W, 0.9° S, 250 m, Ecuador, C. R. Geosci., 340, 1–9, https://doi.org/10.1016/j.crte.2007.11.003, 2008.
Vimeux, F., Gallaire, R., Bony, S., Hoffmann, G., and Chiang, J. C. H.: What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation, Earth Planet. Sc. Lett., 240, 205–220, https://doi.org/10.1016/j.epsl.2005.09.031, 2005.
Vimeux, F., Tremoy, G., Risi, C., and Gallaire, R.: A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolivian Andes, Earth Planet. Sc. Lett., 307, 47–58, https://doi.org/10.1016/j.epsl.2011.04.031, 2011.
Vogel, J. C., Lerman, J. C., and Mook, W. G.: Natural isotopes in surface and groundwater from Argentina, Hydrol. Sci. Bull., 20, 203–221, 1975.
Yurtsever, Y. and Gat, J. R.: Atmospheric waters, in: Stable isotope hydrology, edited by: Gat, J. R. and Gonfiantini, R., IAEA Tech. Rep. Ser. 210, IAEA, Vienna, 1981.