Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest

Hydrology and Earth System Sciences - Tập 17 Số 1 - Trang 409-419
David Windhorst1, T. Waltz1, Edison Timbe2, H. G. Frede1, Lutz Breuer1
1Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-Universität Gießen, Gießen, Germany
2Grupo de Ciencias de la Tierra y del Ambiente, DIUC, Universidad de Cuenca, Cuenca, Ecuador

Tóm tắt

Abstract. This study presents the spatial and temporal variability of δ18O and δ2H isotope signatures in precipitation of a south Ecuadorian montane cloud forest catchment (San Francisco catchment). From 2 September to 25 December 2010, event sampling of open rainfall was conducted along an altitudinal transect (1800 to 2800 m a.s.l.) to investigate possible effects of altitude and weather conditions on the isotope signature. The spatial variability is mainly affected by the altitude effect. The event based δ18O altitude effect for the study area averages −0.22‰ × 100 m−1 (δ2H: −1.12‰ × 100 m−1). The temporal variability is mostly controlled by prevailing air masses. Precipitation during the times of prevailing southeasterly trade winds is significantly enriched in heavy isotopes compared to precipitation during other weather conditions. In the study area, weather during austral winter is commonly controlled by southeasterly trade winds. Since the Amazon Basin contributes large amounts of recycled moisture to these air masses, trade wind-related precipitation is enriched in heavy isotopes. We used deuterium excess to further evaluate the contribution of recycled moisture to precipitation. Analogously to the δ18O and δ2H values, deuterium excess is significantly higher in trade wind-related precipitation. Consequently, it is assumed that evaporated moisture is responsible for high concentrations of heavy isotopes during austral winter.

Từ khóa


Tài liệu tham khảo

Araguas-Araguas, L., Froehlich, K., and Rozanski, K.: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture, Hydrol. Process., 14, 1341–1355, 2000.

Aravena, R., Suzuki, O., Pena, H., Pollastri, A., Fuenzalida, H., and Grilli, A.: Isotopic composition and origin of the precipitation in Northern Chile, Appl. Geochem., 14, 411–422, 1999.

Barthold, F. K., Tyralla, C., Schneider, K., Vache, K. B., Frede, H.-G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resour. Res., 47, W08519, https://doi.org/10.1029/2011WR010604, 2011.

Bendix, J., Homeier, J., Cueva Ortiz, E., Emck, P., Breckle, S.-W., Richter, M., and Beck, E.: Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest, Int. J. Biometeorol., 50, 370–384, https://doi.org/10.1007/s00484-006-0029-8, 2006.

Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P.: Climate, in: Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by: Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., Springer, Berlin, 63–73, 2008.

Birkel, C., Dunn, S. M., Tetzlaff, D., and Soulsby, C.: Assessing the added value of high-resolution isotope tracer data in rainfall-runoff modelling, Hydrol. Earth Syst. Sci. Discuss., 6, 6207–6246, https://doi.org/10.5194/hessd-6-6207-2009, 2009.

Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations, J. Geophys. Res., 113, D19305, https://doi.org/10.1029/2008JD009942, 2008.

Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res., 39, 1299, https://doi.org/10.1029/2003WR002086, 2003.

Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., and Haug, G. H.: Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India, Earth Planet. Sc. Lett., 292, 212–220, https://doi.org/10.1016/j.epsl.2010.01.038, 2010.

Bücker, A., Crespo, P., Frede, H.-G., Vaché, K., Cisneros, F., Breuer, L.: Identifying Controls on Water Chemistry of Tropical Cloud Forest Catchments: Combining Descriptive Approaches and Multivariate Analysis, Aquat. Geochem., 16, 127–149, 2010.

Cortés, A., Durazo, J., and Farvolden, R. N.: Studies of isotopic hydrology of the basin of Mexico and vicinity: annotated bibliography and interpretation, J. Hydrol., 198, 346–376, https://doi.org/10.1016/S0022-1694(96)03273-8, 1997.

Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961a.

Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters, Science, 133, 1833–1834, https://doi.org/10.1126/science.133.3467.1833, 1961b.

Crespo, P., Bücker, A., Feyen, J., Vaché, K. B., Frede, H., and Breuer, L.: Preliminary evaluation of the runoff processes in a remote montane cloud forest basin using Mixing Model Analysis and Mean Transit Time, Hydrol. Process., 26, 3896–3910, https://doi.org/10.1002/hyp.8382, 2012.

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.

Darling, W. G. and Talbot, J. C.: The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall, Hydrol. Earth Syst. Sci., 7, 163–181, https://doi.org/10.5194/hess-7-163-2003, 2003.

Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, access via NOAA ARL READY website: http://ready.arl.noaa.gov/HYSPLIT.php, last access: 27 September 2012, NOAA Air Resources Laboratory, Silver Spring, MD, 2012.

Emck, P.: A climatology of south Ecuador – with special focus on the major Andean ridge as Atlantic–Pacific climate divide, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2007.

Emck, P. and Richter, M.: An Upper Threshold of Enhanced Global Shortwave Irradiance in the Troposphere Derived from Field Measurements in Tropical Mountains, J. Appl. Meteorol. Clim., 47, 2828–2845, https://doi.org/10.1175/2008JAMC1861.1, 2008.

Feng, X., Faiia, A. M., and Posmentier, E. S.: Seasonality of isotopes in precipitation: A global perspective, J. Geophys. Res., 114, D08116, https://doi.org/10.1029/2008JD011279, 2009.

Froehlich, K., Gibson, J. J., and Aggarwal, P.: Deuterium excess in precipitation and its climatological significance, in: Study of Environmental Change Using Isotope Techniques, International Atomic Energy Agency, Vienna, 54–66, 2002.

Garcia, M., Villalba, F., Araguas-Araguas, L., and Rozanski, K.: The role of atmospheric circulation patterns in controlling the regional distribution of stable isotope contents in precipitation: Preliminary results from two transects in the Ecuadorian Andes, in: Isotope Techniques in the Study of Environmental Change, International Atomic Energy Agency, Vienna, 127–140, 1998.

Garvelmann, J., Külls, C., and Weiler, M.: A porewater-based stable isotope approach for the investigation of subsurface hydrological processes, Hydrol. Earth Syst. Sci., 16, 631–640, https://doi.org/10.5194/hess-16-631-2012, 2012.

Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet Sci., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.

Gat, J. R.: Atmospheric water balance – the isotopic perspective, Hydrol. Process., 14, 1357–1369, 2000.

Gat, J. R., Mook, W. G. and Meijer, H.: Environmental isotopes in the hydrological cycle, in: Vol. II Atmospheric Water, edited by: Mook, W., International Atomic Energy Agency, Groningen, 2000.

Göttlicher, D., Obregón, A., Homeier, J., Rollenbeck, R., Nauss, T., and Bendix, J.: Land-cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling, Int. J. Remote Sens., 30, 1867–1886, https://doi.org/10.1080/01431160802541531, 2009.

Goller, R., Wilcke, W., Leng, M. J., Tobschall, H. J., Wagner, K., Valarezo, C., and Zech, W.: Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach, J. Hydrol., 308, 67–80, https://doi.org/10.1016/j.jhydrol.2004.10.022, 2005.

Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C., and Zuppi, G. M.: The altitude effect on the isotopic composition of tropical rains, Chem. Geol., 181, 147–167, https://doi.org/10.1016/S0009-2541(01)00279-0, 2001.

Henderson-Sellers, A., McGuffie, K., and Zhang, H.: Stable isotopes as validation tools for global climate model predictions of the impact of Amazonian deforestation, J. Climate, 15, 2664–2677, 2002.

Hou, S., Masson-Delmotte, V., Qin, D., and Jouzel, J.,: Modern precipitation stable isotope vs. elevation gradients in the High Himalaya. Comment on "A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene" by David B. Rowley et al. [Earth Planet. Sci. Lett. 188 (2001) 253–268], Earth Planet. Sc. Lett., 209, 395–399, https://doi.org/10.1016/S0012-821X(03)00043-8, 2003.

IAEA: Water Resources Programme – Global Network of Isotopes in Precipitation: http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html, last access: 10 February 2012.

Kabeya, N., Katsuyama, M., Kawasaki, M., Ohte, N., and Sugimoto, A.: Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan, Hydrol. Process., 21, 308–322, https://doi.org/10.1002/hyp.6231, 2007.

Kattan, Z.: Characterization of surface water and groundwater in the Damascus Ghotta basin: hydrochemical and environmental isotopes approaches, Environ. Geol., 51, 173–201, https://doi.org/10.1007/s00254-006-0316-z, 2006.

Kebede, S. and Travi, Y.: Origin of the δ18O and δ2H composition of meteoric waters in Ethiopia, Quatern. Int., 257, 4–12, https://doi.org/10.1016/j.quaint.2011.09.032, 2011.

Koivusalo, H., Karvonen, T., and Lepistö, A.: A quasi-three-dimensional model for predicting rainfall-runoff processes in a forested catchment in Southern Finland, Hydrol. Earth Syst. Sci., 4, 65–78, https://doi.org/10.5194/hess-4-65-2000, 2000.

Lachniet, M. S. and Patterson, W. P.: Use of correlation and stepwise regression to evaluate physical controls on the stable isotope values of Panamanian rain and surface waters, J. Hydrol., 324, 115–140, https://doi.org/10.1016/j.jhydrol.2005.09.018, 2006.

Lachniet, M. S. and Patterson, W. P.: Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects, Earth Planet. Sc. Lett., 284, 435–446, https://doi.org/10.1016/j.epsl.2009.05.010, 2009.

Lee, J. E., Johnson, K., and Fung, I.: Precipitation over South America during the Last Glacial Maximum: An analysis of the "amount effect" with a water isotope-enabled general circulation model, Geophys. Res. Lett., 36, L19701, https://doi.org/10.1029/2009GL039265, 2009.

LGR: Los Gatos Research: http://www.lgrinc.com/, last access: 10 April 2012.

Liebminger, A., Haberhauer, G., Papesch, W., and Heiss, G.: Footprints of climate in groundwater and precipitation, Hydrol. Earth Syst. Sci., 11, 785–791, https://doi.org/10.5194/hess-11-785-2007, 2007.

Liu, W. J., Liu, W. Y., Li, P. J., Gao, L., Shen, Y. X., Wang, P. Y., Zhang, Y. P., and Li, H. M.: Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China, Agr. Forest Meteorol., 143, 80–91, https://doi.org/10.1016/j.agrformet.2006.11.009, 2007.

Martinelli, L. A., Victoria, R. L., Silveira Lobo Sternberg, L., Ribeiro, A., and Zacharias Moreira, M.: Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin, J. Hydrol., 183, 191–204, https://doi.org/10.1016/0022-1694(95)02974-5, 1996.

McGuire, K., DeWalle, D., and Gburek, W.: Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians, J. Hydrol., 261, 132–149, https://doi.org/10.1016/S0022-1694(02)00006-9, 2002.

McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., and Seibert, J.: The role of topography on catchment-scale water residence time, Water Resour. Res., 41, W05002, https://doi.org/10.1029/2004WR003657, 2005.

Mook, W. G.: Environmental isotopes in the hydrological cycle, in: Vol. I Introduction, edited by: Mook, W. G., International Atomic Energy Agency, Groningen, 2000.

Moser, H. and Stichler, W.: Die Verwendung des Deuterium und Sauerstoff-18 Gehalts bei Hydrologischen Untersuchungen, Geol. Bavarica, 64, 7–35, 1971.

Newman, B., Tanweer, A. and Kurttas, T.: IAEA Standard Operating Procedure for the Liquid-Water Stable Isotope Analyser: http://www-naweb.iaea.org/napc/ih/documents/other/laser_procedure_rev12.PDF (last access: 10 April 2012), 2009.

Njitchoua, R., Sigha-Nkamdjou, L., Dever, L., Marlin, C., Sighomnou, D., and Nia, P.: Variations of the stable isotopic compositions of rainfall events from the Cameroon rain forest, Central Africa, J. Hydrol., 223, 17–26, https://doi.org/10.1016/S0022-1694(99)00087-6, 1999.

Peng, T.-R., Wang, C.-H., Huang, C.-C., Fei, L.-Y., Chen, C.-T. A., and Hwong, J.-L.: Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region, Earth Planet. Sc. Lett., 289, 357–366, https://doi.org/10.1016/j.epsl.2009.11.024, 2010.

Rhodes, A. L., Guswa, A. J., and Newell, S. E.: Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica, Water Resour. Res., 42, W11402, https://doi.org/10.1029/2005WR004535, 2006.

Rietti-Shati, M., Yam, R., Karlen, W., and Shemesh, A.: Stable isotope composition of tropical high-altitude fresh-waters on Mt. Kenya, Equatorial East Africa, Chem. Geol., 166, 341–350, https://doi.org/10.1016/S0009-2541(99)00233-8, 2000.

Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect, J. Geophys. Res., 113, D19306, https://doi.org/10.1029/2008JD009943, 2008a.

Risi, C., Bony, S., Vimeux, F., Descroix, L., Ibrahim, B., Lebreton, E., Mamadou, I., and Sultan, B.: What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign, Geophys. Res. Lett., 35, L24808, https://doi.org/10.1029/2008GL035920, 2008b.

Rodgers, P., Soulsby, C., and Waldron, S.: Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment, Hydrol. Process., 19, 2291–2307, https://doi.org/10.1002/hyp.5677, 2005a.

Rodgers, P., Soulsby, C., Waldron, S., and Tetzlaff, D.: Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment, Hydrol. Earth Syst. Sci., 9, 139–155, https://doi.org/10.5194/hess-9-139-2005, 2005b.

Rollenbeck, R. and Bendix, J.: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations, Atmos. Res., 99, 277–289, https://doi.org/10.1016/j.atmosres.2010.10.018, 2011.

Rollenbeck, R., Bendix, J., and Fabian, P.: Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador, Hydrol. Process., 25, 344–352, https://doi.org/10.1002/hyp.7799, 2011.

Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate, Science, 258, 981–985, https://doi.org/10.1126/science.258.5084.981, 1992.

Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic patterns in modern global precipitation, Geophys. Monogr. Ser., 78, 1–36, https://doi.org/10.1029/GM078p0001, 1993.

Salati, E., Dall'Olio, A., Matsui, E., and Gat, J. R.: Recycling of water in the Amazon basin: an isotopic study, Water Resour. Res., 15, 1250–1258, https://doi.org/10.1029/WR015i005p01250, 1979.

Saylor, J. E., Mora, A., Horton, B. K., and Nie, J.: Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera, Geochim. Cosmochim. Acta, 73, 6999–7018, https://doi.org/10.1016/j.gca.2009.08.030, 2009.

Scholl, M. A., Gingerich, S. B., and Tribble, G. W.: The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii, J. Hydrol., 264, 170–184, https://doi.org/10.1016/S0022-1694(02)00073-2, 2002.

Scholl, M. A., Shanley, J. B., Zegarra, J. P., and Coplen, T. B.: The stable isotope amount effect: new insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico, Water Resour. Res., 45, W12407, https://doi.org/10.1029/2008WR007515, 2009.

Scholl, M. A., Eugster, W., and Burkard, R.: Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests, Hydrol. Process., 25, 353–366, https://doi.org/10.1002/hyp.7762, 2011.

Siegenthaler, U. and Oeschger, H.: Correlation of 18O in precipitation with temperature and altitude, Nature, 285, 314–317, https://doi.org/10.1038/285314a0, 1980.

Sturm, C., Hoffmann, G., and Langmann, B.: Simulation of the stable water isotopes in precipitation over South America: Comparing regional to global circulation models, J. Climate, 20, 3730–3750, https://doi.org/10.1175/JCLI4194.1, 2007.

Valletcoulomb, C., Gasse, F., and Sonzogni, C.: Seasonal evolution of the isotopic composition of atmospheric water vapour above a tropical lake: Deuterium excess and implication for water recycling, Geochim. Cosmochim. Acta, 72, 4661–4674, https://doi.org/10.1016/j.gca.2008.06.025, 2008.

Victoria, R. L., Martinelli, L. A., Mortatti, J., and Richey, J.: Mechanisms of Water Recycling in the Amazon Basin: Isotopic Insights, Ambio, 20, 384–387, 1991.

Villacís, M., Vimeux, F., and Taupin, J. D.: Analysis of the climate controls on the isotopic composition of precipitation (δ18O) at Nuevo Rocafuerte, 74.5° W, 0.9° S, 250 m, Ecuador, C. R. Geosci., 340, 1–9, https://doi.org/10.1016/j.crte.2007.11.003, 2008.

Vimeux, F., Gallaire, R., Bony, S., Hoffmann, G., and Chiang, J. C. H.: What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation, Earth Planet. Sc. Lett., 240, 205–220, https://doi.org/10.1016/j.epsl.2005.09.031, 2005.

Vimeux, F., Tremoy, G., Risi, C., and Gallaire, R.: A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolivian Andes, Earth Planet. Sc. Lett., 307, 47–58, https://doi.org/10.1016/j.epsl.2011.04.031, 2011.

Vogel, J. C., Lerman, J. C., and Mook, W. G.: Natural isotopes in surface and groundwater from Argentina, Hydrol. Sci. Bull., 20, 203–221, 1975.

Yurtsever, Y. and Gat, J. R.: Atmospheric waters, in: Stable isotope hydrology, edited by: Gat, J. R. and Gonfiantini, R., IAEA Tech. Rep. Ser. 210, IAEA, Vienna, 1981.