Pharmacological Neuroprotection for Glaucoma

Drugs - Tập 67 - Trang 725-759 - 2012
Glyn Chidlow1,2, John P. M. Wood1,2, Robert J. Casson1,2
1Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute, Institute of Medical and Veterinary Services, Adelaide, Australia
2University of Adelaide, Adelaide, Australia

Tóm tắt

Glaucoma represents a group of neurodegenerative diseases characterised by structural damage to the optic nerve and slow, progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure is traditionally considered to be the most important risk factor for glaucoma, and treatment options for the disease have hitherto been limited to its reduction. However, visual field loss and RGC death continue to occur in patients with well controlled intraocular pressures and, thus, a consensus has recently emerged that additional treatment strategies are needed. One such strategy is pharmacological neuroprotection, which in the context of glaucoma, refers to the situation in which a drug is deployed to interact with neuronal or glial elements within the retina/optic nerve head and thereby facilitate the survival of RGCs. The advent of animal models of chronic glaucoma has enhanced our understanding of many of the pathological processes occurring in glaucoma and, in doing so, described logical targets for pharmacological intervention. Such targets, which have been manipulated with varying degrees of success in relevant animal paradigms include glutamate receptors, autoimmune elements, neurotrophin deprivation, nitric oxide synthesis, oxidative stress products, sodium and calcium channels, heat shock proteins and apoptotic pathways. With exciting data now emerging from many research laboratories, it is obvious that pharmacological neuroprotection for glaucoma without doubt represents an exciting development in the search for a treatment modality for this debilitating disease.

Tài liệu tham khảo

Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80 (5): 389–93 Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120 (6): 701–13 Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 1998; 126 (4): 487–97 The Advanced Glaucoma Intervention Study (AGIS). The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000; 130 (4): 429–40 Leskea MC, Heijl A, Hyman L, et al. Factors for progression and glaucoma treatment: the Early Manifest Glaucoma Trial. Curr Opin Ophthalmol 2004; 15 (2): 102–6 Schwartz M, Belkin M, Yoles E, et al. Potential treatment modalities for glaucomatous neuropathy: neuroprotection and neuroregeneration. J Glaucoma 1996; 5 (6): 427–32 Osborne NN, Chidlow G, Nash MS, et al. The potential of neuroprotection in glaucoma treatment. Curr Opin Ophthalmol 1999; 10 (2): 82–92 Levin LA. Direct and indirect approaches to neuroprotective therapy of glaucomatous optic neuropathy. Surv Ophthalmol 1999; 43 Suppl. 1: S98–101 Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol 1998; 153 (1): 1–7 Levkovitch-Verbin H, Quigley HA, Martin KR, et al. A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci 2003; 44 (8): 3388–93 Harris A, Ciulla TA, Kagemann L, et al. Vasoprotection as neuroprotection for the optic nerve. Eye 2000; 14 (Pt 3B): 473–5 Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21 (4): 359–93 Costa VP, Harris A, Stefansson E, et al. The effects of antiglaucoma and systemic medications on ocular blood flow. Prog Retin Eye Res 2003; 22 (6): 769–805 Wheeler L, WoldeMussie E, Lai R. Role of alpha-2 agonists in neuroprotection. Surv Ophthalmol 2003; 48 Suppl. 1: S47–51 Osborne NN, Wood JP, Chidlow G. Invited review: neuroprotective properties of certain beta-adrenoceptor antagonists used for the treatment of glaucoma. J Ocul Pharmacol Ther 2005; 21 (3): 175–81 Krupin T, Liebmann JM, Greenfield DS, et al. The Low-pressure Glaucoma Treatment Study (LoGTS) study design and baseline characteristics of enrolled patients. Ophthalmology 2005; 112 (3): 376–85 Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991; 32 (3): 484–91 Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 1988; 95 (3): 357–63 Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol 2000; 84 (3): 303–10 Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma 2002; 11 (4): 365–70 Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41 (3): 741–8 Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 1979; 86 (10): 1803–30 Zhao DY, Cioffi GA. Anterior optic nerve microvascular changes in human glaucomatous optic neuropathy. Eye 2000; 14 (Pt 3B): 445–9 Quigley HA, Hohman RM, Addicks EM, et al. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci 1984; 25 (8): 918–31 Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sciera in human and experimental monkey glaucoma. Curr Eye Res 1991; 10 (9): 877–88 Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 1991; 75 (9): 552–7 Agapova OA, Kaufman PL, Lucarelli MJ, et al. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res 2003; 967 (1-2): 132–43 Agapova OA, Ricard CS, Salvador-Silva M, et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes. Glia 2001; 33 (3): 205–16 Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol 1995; 23 (2): 85–91 Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res 1999; 18 (1): 39–57 Kielczewski JL, Pease ME, Quigley HA. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci 2005; 46 (9): 3188–96 Kerrigan LA, Zack DJ, Quigley HA, et al. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 1997; 115 (8): 1031–5 Jakobs TC, Libby RT, Ben Y, et al. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 2005; 171 (2): 313–25 Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 1998; 39 (12): 2304–20 Naskar R, Dreyer EB. New horizons in neuroprotection. Surv Ophthalmol 2001; 45 Suppl. 3: S250–5 Nickells RW. Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv Ophthalmol 1999; 43 Suppl. 1: S151–61 Vorwerk CK, Gorla MS, Dreyer EB. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol 1999; 43 Suppl. 1: S142–50 Tezel G, Yang J, Wax MB. Heat shock proteins, immunity and glaucoma. Brain Res Bull 2004; 62 (6): 473–80 Casson RJ. Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin Experiment Ophthalmol 2006; 34 (1): 54–63 Osborne NN, Wood JPM, Chidlow G, et al. Ganglion cell death in glaucoma: what do we really know? British J Ophthalmol 1999; 83: 980–6 Osborne NN, Ugarte M, Chao M, et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 1999; 43 Suppl. 1: S102–28 Farkas RH, Grosskreutz CL. Apoptosis, neuroprotection, and retinal ganglion cell death: an overview. Int Ophthalmol Clin 2001; 41 (1): 111–30 Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am 2005; 18 (3): 383–95 Morrison JC, Johnson EC, Cepurna W, et al. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res 2005; 24 (2): 217–40 Bathija R. Optic nerve blood flow in glaucoma. Clin Exp Optom 2000; 83 (3): 180–4 Whitmore AV, Libby RT, John SW. Glaucoma. Thinking in new ways: a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 2005; 24 (6): 639–62 Albon J, Purslow PP, Karwatowski WS, et al. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 2000; 84 (3): 318–23 Albon J, Karwatowski WS, Avery N, et al. Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol 1995; 79 (4): 368–75 Quigley HA, Addicks EM, Green WR, et al. Optic nerve damage in human glaucoma II: the site of injury and susceptibility to damage. Arch Ophthalmol 1981; 99 (4): 635–49 Ethier CR. Scieral biomechanics and glaucoma: a connection? Can J Ophthalmol 2006; 41: 9–11 Morgan JE. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye 2000; 14 (Pt 3B): 437–44 Yuan L, Neufeld AH. Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001; 64 (5): 523–32 Tezel G, Hernandez MR, Wax MB. In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 2001; 34 (3): 178–89 Neufeld AH, Liu B. Glaucomatous optic neuropathy: when glia misbehave. Neuroscientist 2003; 9 (6): 485–95 Nickells RW. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma 1996; 5 (5): 345–56 Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 2000; 41 (11): 3460–6 Pease ME, McKinnon SJ, Quigley HA, et al. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 2000; 41 (3): 764–74 Garcia-Valenzuela E, Shareef S, Walsh J, et al. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995; 61 (1): 33–44 Johnson EC, Deppmeier LM, Wentzien SK, et al. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 2000; 41 (2): 431–42 Morrison JC, Moore CG, Deppmeier LM, et al. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997; 64 (1): 85–96 Zhang C, Tso MO. Characterization of activated retinal microglia following optic axotomy. J Neurosci Res 2003; 73 (6): 840–5 Berkelaar M, Clarke DB, Wang YC, et al. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 1994; 14 (7): 4368–74 Ko ML, Hu DN, Ritch R, et al. The combined effect of brainderived neurotrophic factor and a free radical scavenger in experimental glaucoma. Invest Ophthalmol Vis Sci 2000; 41 (10): 2967–71 Peinado-Ramon P, Salvador M, Villegas-Perez MP, et al. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells: a quantitative in vivo study. Invest Ophthalmol Vis Sci 1996; 37 (4): 489–500 Mansour-Robaey S, Clarke DB, Wang YC, et al. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A 1994; 91 (5): 1632–6 Unoki K, LaVail MM. Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci 1994; 35 (3): 907–15 Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44 (10): 4357–65 Chen H, Weber AJ. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci 2001; 42 (5): 966–74 Klocker N, Kermer P, Weishaupt JH, et al. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 2000; 20 (18): 6962–7 Nagahiro S, Uno M, Sato K, et al. Pathophysiology and treatment of cerebral ischemia. J Med Invest 1998; 45 (1–4): 57–70 Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanisms of damage and treatment. J Neurosurg 1992; 77 (3): 337–54 Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg 1992; 77 (2): 169–84 Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004; 23 (1): 91–147 Henneberry RC, Novelli A, Cox JA, et al. Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons: an hypothesis for cell death in aging and disease. Ann N Y Acad Sci 1989; 568: 225–33 Novelli A, Reilly JA, Lysko PG, et al. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988; 451 (1–2): 205–12 Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke 1998; 29 (3): 705–18 Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34 (4–5): 325–37 Kuroda S, Siesjo BK. Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci 1997; 4 (4): 199–212 Cheon EW, Park CH, Kang SS, et al. Nitric oxide synthase expression in the transient ischemic rat retina: neuroprotection of betaxolol. Neurosci Lett 2002; 330 (3): 265–9 Cheon EW, Park CH, Kang SS, et al. Change in endothelial nitric oxide synthase in the rat retina following transient ischemia. Neuroreport 2003; 14 (3): 329–33 Asian M, Yucel I, Akar Y, et al. Nitrotyrosine formation and apoptosis in rat models of ocular injury. Free Radic Res 2006; 40 (2): 147–53 Blute TA, Lee MR, Eldred WD. Direct imaging of NMDA-stimulated nitric oxide production in the retina. Vis Neurosci 2000; 17 (4): 557–66 Nufeld AH. Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv Ophthalmol 1999; 43 Suppl. 1: S129–35 Neufeld AH, Hernandez MR, Gonzalez M. Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 1997; 115 (4): 497–503 Shareef S, Sawada A, Neufeld AH. Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure. Invest Ophthalmol Vis Sci 1999; 40 (12): 2884–91 Pang IH, Johnson EC, Jia L, et al. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage. Invest Ophthalmol Vis Sci 2005; 46 (4): 1313–21 Neufeld AH. Pharmacologic neuroprotection with an inhibitor of nitric oxide synthase for the treatment of glaucoma. Brain Res Bull 2004; 62 (6): 455–9 Liu B, Neufeld AH. Nitric oxide synthase-2 in human optic nerve head astrocytes induced by elevated pressure in vitro. Arch Ophthalmol 2001; 119 (2): 240–5 Liu B, Neufeld AH. Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 2000; 30 (2): 178–86 Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci 1998; 39 (12): 2277–87 Tezel G, Hernandez R, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol 2000; 118 (4): 511–8 Lu HB, Yuan YS, Li Y, et al. The expression of heat shock protein 27 in retinal ganglion cells in the rat glaucoma model [in Chinese]. Zhonghua Yan Ke Za Zhi 2005; 41 (6): 533–9 Sakai M, Sakai H, Nakamura Y, et al. Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Jpn J Ophthalmol 2003; 47 (1): 42–52 Tezel G, Wax MB. Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Invest Ophthalmol Vis Sci 1999; 40 (11): 2660–7 Park KH, Cozier F, Ong OC, et al. Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2001; 42 (7): 1522–30 Weinreb RN, Lindsey JD. The importance of models in glaucoma research. J Glaucoma 2005; 14 (4): 302–4 Goldblum D, Mittag T. Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye. Vision Res 2002; 42 (4): 471–8 Morrison JC. Elevated intraocular pressure and optic nerve injury models in the rat. J Glaucoma 2005; 14 (4): 315–7 Levin LA. Retinal ganglion cells and supporting elements in culture. J Glaucoma 2005; 14 (4): 305–7 Rasmussen CA, Kaufman PL. Primate glaucoma models. J Glaucoma 2005; 14 (4): 311–4 Shareef SR, Garcia-Valenzuela E, Salierno A, et al. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995; 61 (3): 379–82 Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 1998; 784 (1–2): 100–4 Levkovitch-Verbin H, Quigley HA, Martin KR, et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 2002; 43 (2): 402–10 WoldeMussie E, Ruiz G, Wijono M, et al. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 2001; 42 (12): 2849–55 Lindsey JD, Weinreb RN. Elevated intraocular pressure and transgenic applications in the mouse. J Glaucoma 2005; 14 (4): 318–20 John SW. Mechanistic insights into glaucoma provided by experimental genetics the cogan lecture. Invest Ophthalmol Vis Sci 2005; 46 (8): 2649–61 Wheeler LA, Gil DW, WoldeMussie E. Role of alpha-2 adrenergic receptors in neuroprotection and glaucoma. Surv Ophthalmol 2001; 45 Suppl. 3: S290–4 Chaudhary P, Ahmed F, Sharma SC. MK801-a neuroprotectant in rat hypertensive eyes. Brain Res 1998; 792 (1): 154–8 Guo L, Salt TE, Maass A, et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 2006; 47 (2): 626–33 WoldeMussie E, Yoles E, Schwartz M, et al. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 2002; 11 (6): 474–80 Schuettauf F, Quinto K, Naskar R, et al. Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vision Res 2002; 42 (20): 2333–7 Hare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci 2004; 45 (8): 2625–39 Hare WA, WoldeMussie E, Weinreb RN, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: structural measures. Invest Ophthalmol Vis Sci 2004; 45 (8): 2640–51 Yucel YH, Gupta N, Zhang Q, et al. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol 2006; 124 (2): 217–25 Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 2001; 98 (6): 3398–403 Bakalash S, Kessler A, Mizrahi T, et al. Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Invest Ophthalmol Vis Sci 2003; 44 (8): 3374–81 Bakalash S, Shlomo GB, Aloni E, et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med 2005; 83 (11): 904–16 Ko ML, Hu DN, Ritch R, et al. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett 2001; 305 (2): 139–42 Ji JZ, Elyaman W, Yip HK, et al. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 2004; 19 (2): 265–72 Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A 1999; 96 (17): 9944–8 Hains BC, Waxman SG. Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma. Invest Ophthalmol Vis Sci 2005; 46 (11): 4164–9 Hirooka K, Tokuda M, Miyamoto O, et al. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res 2004; 28 (3): 153–7 Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44 (5): 1982–92 Huang W, Fileta JB, Dobberfuhl A, et al. Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A 2005; 102 (34): 12242–7 Tahzib NG, Ransom NL, Reitsamer HA, et al. Alpha-fodrin is cleaved by caspase-3 in a chronic ocular hypertensive (COH) rat model of glaucoma. Brain Res Bull 2004; 62 (6): 491–5 McKinnon SJ, Lehman DM, Tahzib NG, et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther 2002; 5 (6): 780–7 Ahmed FA, Hegazy K, Chaudhary P, et al. Neuroprotective effect of alpha(2) agonist (brimonidine) on adult rat retinal ganglion cells after increased intraocular pressure. Brain Res 2001; 913 (2): 133–9 Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 1957; 58 (2): 193–201 Sisk DR, Kuwabara T. Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefes Arch Clin Exp Ophthalmol 1985; 223 (5): 250–8 Siliprandi R, Lipartiti M, Fadda E, et al. Activation of the glutamate metabotropic receptor protects retina against N-methyl-D-aspartate toxicity. Eur J Pharmacol 1992; 219 (1): 173–4 Vorwerk CK, Lipton SA, Zurakowski D, et al. Chronic low-dose glutamate is toxic to retinal ganglion cells: toxicity blocked by memantine. Invest Ophthalmol Vis Sci 1996; 37 (8): 1618–24 Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996; 114 (3): 299–305 Brooks DE, Garcia GA, Dreyer EB, et al. Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res 1997; 58 (8): 864–7 Dkhissi O, Chanut E, Wasowicz M, et al. Retinal TUNEL-positive cells and high glutamate levels in vitreous humor of mutant quail with a glaucoma-like disorder. Invest Ophthalmol Vis Sci 1999; 40 (5): 990–5 Honkanen RA, Baruah S, Zimmerman MB, et al. Vitreous amino acid concentrations in patients with glaucoma undergoing vitrectomy. Arch Ophthalmol 2003; 121 (2): 183–8 Carter-Dawson L, Crawford ML, Harwerth RS, et al. Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci 2002; 43 (8): 2633–7 Wamsley S, Gabelt BT, Dahl DB, et al. Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch Ophthalmol 2005; 123 (1): 64–70 Levkovitch-Verbin H, Martin KR, Quigley HA, et al. Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection. J Glaucoma 2002; 11 (5): 396–405 Martin KR, Levkovitch-Verbin H, Valenta D, et al. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 2002; 43 (7): 2236–43 WoldeMussie E, Wijono M, Ruiz G. Muller cell response to laser-induced increase in intraocular pressure in rats. Glia 2004; 47 (2): 109–19 Sullivan RK, WoldeMussie E, Macnab L, et al. Evoked expression of the glutamate transporter GLT-1c in retinal ganglion cells in human glaucoma and in a rat model. Invest Ophthalmol Vis Sci 2006; 47 (9): 3853–9 Hartwick AT, Zhang X, Chauhan BC, et al. Functional assessment of glutamate clearance mechanisms in a chronic rat glaucoma model using retinal ganglion cell calcium imaging. J Neurochem 2005; 94 (3): 794–807 Hamassaki-Britto DE, Hermans-Borgmeyer I, Heinemann S, et al. Expression of glutamate receptor genes in the mammalian retina: the localization of GluR1 through GluR7 mRNAs. J Neurosci 1993; 13 (5): 1888–98 Brundstatter JH, Hartveit E, Sassoe-Pognetto M, et al. Expression of NMDA and high-affinity kainate receptor subunit mRNAs in the adult rat retina. Eur J Neurosci 1994; 6 (7): 1100–12 Hartveit E, Brundstatter JH, Enz R, et al. Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci 1995; 7 (7): 1472–83 Lagreze WA, Knorle R, Bach M, et al. Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci 1998; 39 (6): 1063–6 Osborne NN. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci 1999; 16 (1): 45–52 Kim TW, Kim DM, Park KH, et al. Neuroprotective effect of memantine in a rabbit model of optic nerve ischemia. Korean J Ophthalmol 2002; 16 (1): 1–7 Naskar R, Quinto K, Romann I, et al. Phenytoin blocks retinal ganglion cell death after partial optic nerve crush. Exp Eye Res 2002; 74 (6): 747–52 Vorwerk CK, Zurakowski D, McDermott LM, et al. Effects of axonal injury on ganglion cell survival and glutamate homeostasis. Brain Res Bull 2004; 62 (6): 485–90 Areosa SA, Sherriff F, McShane R. Memantine for dementia. Cochrane Database Syst Rev 2005; (3): CD003154 Lipton SA. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol 2003; 48 Suppl. 1: S38–46 Stys PK. White matter injury mechanisms. Curr Mol Med 2004; 4 (2): 113–30 Micu I, Jiang Q, Coderre E, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 2006; 439 (7079): 988–92 Schwartz M, Kipnis J. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J Neurol Sci 2005; 233 (1-2): 163–6 Schwartz M. Neurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective vaccine: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2003; 44 (4): 1407–11 Schwartz M. Vaccination for glaucoma: dream or reality? Brain Res Bull 2004; 62 (6): 481–4 Moalem G, Leibowitz-Amit R, Yoles E, et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5 (1): 49–55 Moalem G, Yoles E, Leibowitz-Amit R, et al. Autoimmune T cells retard the loss of function in injured rat optic nerves. J Neuroimmunol 2000; 106 (1-2): 189–97 Fisher J, Levkovitch-Verbin H, Schori H, et al. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 2001; 21 (1): 136–42 Yoles E, Hauben E, Palgi O, et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001; 21 (11): 3740–8 Kipnis J, Yoles E, Schori H, et al. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 2001; 21 (13): 4564–71 Bakalash S, Kipnis J, Yoles E, et al. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 2002; 43 (8): 2648–53 Mizrahi T, Hauben E, Schwartz M. The tissue-specific self-pathogen is the protective self-antigen: the case of uveitis. J Immunol 2002; 169 (10): 5971–7 Ben Simon GJ, Bakalash S, Aloni E, et al. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy. Am J Ophthalmol 2006; 141 (6): 1105–11 Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 2000; 97 (13): 7446–51 Blair M, Pease ME, Hammond J, et al. Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 2005; 46 (3): 884–90 Simpson D, Noble S, Perry C. Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis. CNS Drugs 2002; 16 (12): 825–50 Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 1974; 13 (10): 771–83 Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci 1977; 16 (5): 426–41 Johansson JO. Retrograde axoplasmic transport in rat optic nerve in vivo: what causes blockage at increased intraocular pressure? Exp Eye Res 1986; 43 (4): 653–60 Johansson JO. Inhibition and recovery of retrograde axoplasmic transport in rat optic nerve during and after elevated IOP in vivo. Exp Eye Res 1988; 46 (2): 223–7 Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol 1976; 15 (8): 606–16 Quigley HA, Anderson DR. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 1977; 16 (7): 640–4 Quigley HA, Guy J, Anderson DR. Blockade of rapid axonal transport: effect of intraocular pressure elevation in primate optic nerve. Arch Ophthalmol 1979; 97 (3): 525–31 Quigley HA, Addicks EM. Chronic experimental glaucoma in primates, II: effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 1980; 19 (2): 137–52 Martin KR, Quigley HA, Valenta D, et al. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Exp Eye Res 2006; 83 (2): 255–62 Hollander H, Makarov F, Stefani FH, et al. Evidence of constriction of optic nerve axons at the lamina cribrosa in the normotensive eye in humans and other mammals. Ophthalmic Res 1995; 27 (5): 296–309 Barron MJ, Griffiths P, Turnbull DM, et al. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol 2004; 88 (2): 286–90 Rudzinski M, Wong TP, Saragovi HU. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol 2004; 58 (3): 341–54 Kido N, Tanihara H, Honjo M, et al. Neuroprotective effects of brain-derived neurotrophic factor in eyes with NMDA-induced neuronal death. Brain Res 2000; 884 (1–2): 59–67 Klocker N, Cellerino A, Bahr M. Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells in vivo. J Neurosci 1998; 18 (3): 1038–46 Chaum E. Retinal neuroprotection by growth factors: a mechanistic perspective. J Cell Biochem 2003; 88 (1): 57–75 Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 2003; 22 (4): 483–543 Motallebipour M, Rada-Iglesias A, Jansson M, et al. The promoter of inducible nitric oxide synthase implicated in glaucoma based on genetic analysis and nuclear factor binding. Mol Vis 2005; 11: 950–7 Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003; 419 (1): 31–40 Nyengaard JR, Chang K, Berhorst S, et al. Discordant effects of guanidines on renal structure and function and on regional vascular dysfunction and collagen changes in diabetic rats. Diabetes 1997; 46 (1): 94–106 Garthwaite G, Goodwin DA, Batchelor AM, et al. Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 2002; 109 (1): 145–55 Zhou W, Goldin AL. Use-dependent potentiation of the Nav1.6 sodium channel. Biophys J 2004; 87 (6): 3862–72 Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci 1992; 12 (2): 430–9 Stys PK, Ransom BR, Waxman SG. Tertiary and quaternary local anesthetics protect CNS white matter from anoxic injury at concentrations that do not block excitability. J Neurophysiol 1992; 67 (1): 236–40 Garthwaite G, Brown G, Batchelor AM, et al. Mechanisms of ischaemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve. Neuroscience 1999; 94 (4): 1219–30 Lo AC, Black JA, Waxman SG. Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis. Neuroreport 2002; 13 (15): 1909–12 Fern R, Ransom BR, Stys PK, et al. Pharmacological protection of CNS white matter during anoxia: actions of phenytoin, carbamazepine and diazepam. J Pharmacol Exp Ther 1993; 266 (3): 1549–55 Tunnicliff G. Basis of the antiseizure action of phenytoin. Gen Pharmacol 1996; 27 (7): 1091–7 Goto Y, Taniwaki T, Shigematsu J, et al. The long-term effects of antiepileptic drugs on the visual system in rats: electrophysiological and histopathological studies. Clin Neurophysiol 2003; 114 (8): 1395–402 Becker B, Stamper RL, Asseff C, et al. Effect of diphenylhydantoin on glaucomatous field loss: a preliminary report. Trans Am Acad Ophthalmol Otolaryngol 1972; 76 (2): 412–22 Osborne NN, Chidlow G, Wood JP, et al. Expectations in the treatment of retinal diseases: neuroprotection. Curr Eye Res 2001; 22 (5): 321–32 Santafe J, Martinez de Ibarreta MJ, Segarra J, et al. A long-lasting hypotensive effect of topical diltiazem on the intraocular pressure in conscious rabbits. Naunyn Schmiedebergs Arch Pharmacol 1997; 355 (5): 645–50 Siegner SW, Netland PA, Schroeder A, et al. Effect of calcium channel blockers alone and in combination with antiglaucoma medications on intraocular pressure in the primate eye. J Glaucoma 2000; 9 (4): 334–9 Osborne NN, Wood JP, Cupido A, et al. Topical flunarizine reduces IOP and protects the retina against ischemia-excitotoxicity. Invest Ophthalmol Vis Sci 2002; 43 (5): 1456–64 Campana G, Bucolo C, Murari G, et al. Ocular hypotensive action of topical flunarizine in the rabbit: role of sigma 1 recognition sites. J Pharmacol Exp Ther 2002; 303 (3): 1086–94 Tamaki Y, Araie M, Fukaya Y, et al. Effects of lomerizine, a calcium channel antagonist, on retinal and optic nerve head circulation in rabbits and humans. Invest Ophthalmol Vis Sci 2003; 44 (11): 4864–71 Ishii K, Fukaya Y, Araie M, et al. Topical administration of iganidipine, a new water-soluble Ca2+ antagonist, increases ipsilateral optic nerve head circulation in rabbits and cynomolgus monkeys. Curr Eye Res 2004; 29 (1): 67–73 Orgul S, Zawinka C, Gugleta K, et al. Therapeutic strategies for normal-tension glaucoma. Ophthalmologica 2005; 219 (6): 317–23 Veach J. Functional dichotomy: glutathione and vitamin E in homeostasis relevant to primary open-angle glaucoma. Br J Nutr 2004; 91 (6): 809–29 Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res 2006; 612 (2): 105–14 Birich TV, Birich TA, Marchenko LN, et al. Lipid peroxidation in the blood of primary glaucoma patients [in Russian]. Vestn Oftalmol 1986; 102 (1): 13–5 Ferreira SM, Lerner SF, Brunzini R, et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 2004; 137 (1): 62–9 Gherghel D, Griffiths HR, Hilton EJ, et al. Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2005; 46 (3): 877–83 Papp E, Nardai G, Soti C, et al. Molecular chaperones, stress proteins and redox homeostasis. Biofactors 2003; 17 (1-4): 249–57 Farkas RH, Chowers I, Hackam AS, et al. Increased expression of iron-regulating genes in monkey and human glaucoma. Invest Ophthalmol Vis Sci 2004; 45 (5): 1410–7 Moreno MC, Campanelli J, Sande P, et al. Retinal oxidative stress induced by high intraocular pressure. Free Radie Biol Med 2004; 37 (6): 803–12 Ko ML, Peng PH, Ma MC, et al. Dynamic changes in reactive oxygen species and antioxidant levels in retinas in experimental glaucoma. Free Radie Biol Med 2005; 39 (3): 365–73 Aydemir O, Naziroglu M, Celebi S, et al. Antioxidant effects of alpha-, gamma- and succinate-tocopherols in guinea pig retina during ischemia-reperfusion injury. Pathophysiology 2004; 11 (3): 167–71 Dilsiz N, Sahaboglu A, Yildiz MZ, et al. Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefes Arch Clin Exp Ophthalmol 2006; 244: 627–33 Birich TV, Birich TA, Marchenko LN, et al. Vitamin E in the complex treatment of patients with primary glaucoma [in Russian]. Vestn Oftalmol 1986; 102 (2): 10–3 Cellini M, Caramazza N, Mangiafico P, et al. Fatty acid use in glaucomatous optic neuropathy treatment. Acta Ophthalmol Scand Suppl 1998; (227): 41–2 Kang JH, Pasquale LR, Willett W, et al. Antioxidant intake and primary open-angle glaucoma: a prospective study. Am J Epidemiol 2003; 158 (4): 337–46 Chung HS, Harris A, Kristinsson JK, et al. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharmacol Ther 1999; 15 (3): 233–40 Szabo ME, Droy-Lefaix MT, Doly M, et al. Ischemia and reperfusion-induced histologic changes in the rat retina: demonstration of a free radical-mediated mechanism. Invest Ophthalmol Vis Sci 1991; 32 (5): 1471–8 Szabo ME, Droy-Lefaix MT, Doly M, et al. Free radicalmediated effects in reperfusion injury: a histologic study with Superoxide dismutase and EGB 761 in rat retina. Ophthalmic Res 1991; 23 (4): 225–34 Kim SY, Kwak JS, Shin JP, et al. The protection of the retina from ischemic injury by the free radical scavenger EGb 761 and zinc in the cat retina. Ophthalmologica 1998; 212 (4): 268–74 Cheung ZH, So KF, Lu Q, et al. Enhanced survival and regeneration of axotomized retinal ganglion cells by a mixture of herbal extracts. J Neurotrauma 2002; 19 (3): 369–78 Wang YS, Xu L, Ma K, et al. Protective effects of Ginkgo biloba extract 761 against glutamate-induced neurotoxicity in cultured retinal neuron. Chin Med J (Engl) 2005; 118 (11): 948–52 Droy-Lefaix MT, Cluzel J, Menerath JM, et al. Antioxidant effect of a Ginkgo biloba extract (EGb 761) on the retina. Int J Tissue React 1995; 17 (3): 93–100 Droy-Lefaix MT, Bonhomme B, Doly M. Protective effect of Ginkgo biloba extract (EGB 761) on free radical-induced changes in the electroretinogram of isolated rat retina. Drugs Exp Clin Res 1991; 17 (12): 571–4 Szabo ME, Droy-Lefaix MT, Doly M. Direct measurement of free radicals in ischemic/reperfused diabetic rat retina. Clin Neurosci 1997; 4 (5): 240–5 Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 2003; 60 (9): 1779–92 Cooper R. Gin(kgo) and tonic: with a twist! J Altern Complement Med 2003; 9 (5): 599–601 Quaranta L, Bettelli S, Uva MG, et al. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology 2003; 110 (2): 359–62 Franklin TB, Krueger-Naug AM, Clarke DB, et al. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 2005; 21 (5): 379–92 Richter-Landsberg C, Goldbaum O. Stress proteins in neural cells: functional roles in health and disease. Cell Mol Life Sci 2003; 60 (2): 337–49 Salvador-Silva M, Ricard CS, Agapova OA, et al. Expression of small heat shock proteins and intermediate filaments in the human optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. J Neurosci Res 2001; 66 (1): 59–73 Wax MB, Tezel G, Kawase K, et al. Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 2001; 108 (2): 296–302 Kretz A, Schmeer C, Tausch S, et al. Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis 2006: 21: 421–30 Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407 (6805): 770–6 Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36 (5): 774–86 Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 2000; 20 (13): 5037–44 Chaudhary P, Ahmed F, Quebada P, et al. Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 1999; 67 (1): 36–45 Watanabe M, Fukuda Y. Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog Retin Eye Res 2002; 21 (6): 529–53 Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, et al. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci 2001; 42 (5): 975–82 Zhang Y, Cho CH, Atchaneeyasakul LO, et al. Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion. Invest Ophthalmol Vis Sci 2005; 46 (6): 2133–9 Lam TT, Abler AS, Kwong JM, et al. N-methyl-D-aspartate (NMDA)-induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 1999; 40 (10): 2391–7 Laabich A, Cooper NG. Neuroprotective effect of AIP on N-methyl-D-aspartate-induced cell death in retinal neurons. Brain Res Mol Brain Res 2000; 85 (1–2): 32–40 Zhang C, Rosenbaum DM, Shaikh AR, et al. Ischemic preconditioning attenuates apoptotic cell death in the rat retina. Invest Ophthalmol Vis Sci 2002; 43 (9): 3059–66 Katai N, Yoshimura N. Apoptotic retinal neuronal death by ischemia-reperfusion is executed by two distinct caspase family proteases. Invest Ophthalmol Vis Sci 1999; 40 (11): 2697–705 Guo L, Moss SE, Alexander RA, et al. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005; 46 (1): 175–82 Wang P, Jiang Y, Huang P, et al. Glutamate in experimental acute elevated intraocular pressure models of rabbits [in Chinese]. Zhonghua Yan Ke Za Zhi 2000; 36 (5): 378–80 Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res 2005; 1057 (1-2): 17–28 Morrison JC, Nylander KB, Lauer AK, et al. Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 1998; 39 (3): 526–31 Schlamp CL, Johnson EC, Li Y, et al. Changes in Thyl gene expression associated with damaged retinal ganglion cells. Mol Vis 2001; 7: 192–201 Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, et al. Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 2006; 124 (4): 520–6 Okisaka S, Murakami A, Mizukawa A, et al. Apoptosis in retinal ganglion cell decrease in human glaucomatous eyes. Jpn J Ophthalmol 1997; 41 (2): 84–8 Tatton NA, Tezel G, Insolia SA, et al. In situ detection of apoptosis in normal pressure glaucoma. a preliminary examination. Surv Ophthalmol 2001; 45 Suppl. 3: S268–72 Levin LA, Louhab A. Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy. Arch Ophthalmol 1996; 114 (4): 488–91 Hanninen VA, Pantcheva MB, Freeman EE, et al. Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res 2002; 25 (6): 389–95 McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 2002; 43 (4): 1077–87 Wang X, Ng YK, Tay SS. Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 2005; 82 (5): 674–89 Huang W, Dobberfuhl A, Filippopoulos T, et al. Transcriptional up-regulation and activation of initiating caspases in experimental glaucoma. Am J Pathol 2005; 167 (3): 673–81 Libby RT, Li Y, Savinova OV, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 2005; 1 (1): 17–26 Ji J, Chang P, Pennesi ME, et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vision Res 2005; 45 (2): 169–79 Gross RL, Ji J, Chang P, et al. A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans Am Ophthalmol Soc 2003; 101: 163–9; discussion 9-71 Levkovitch-Verbin H, Dardik R, Vander S, et al. Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci 2006; 47 (6): 2491–7 Kanamori A, Nakamura M, Nakanishi Y, et al. Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res 2004; 1022 (1–2): 195–204 Zhou X, Li F, Kong L, et al. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem 2005; 280 (35): 31240–8 Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287 (4): C817–33 Tatton W, Chen D, Chalmers-Redman R, et al. Hypothesis for a common basis for neuroprotection in glaucoma and Alzheimer’s disease: anti-apoptosis by alpha-2-adrenergic receptor activation. Surv Ophthalmol 2003; 48 Suppl. 1: S25–37 Huang X, Wu DY, Chen G, et al. Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest Ophthalmol Vis Sci 2003; 44 (1): 347–54 Kermer P, Klocker N, Labes M, et al. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J Neurosci 1998; 18 (12): 4656–62 Kermer P, Klocker N, Labes M, et al. Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 1999; 453 (3): 361–4 Vidal-Sanz M, Lafuente M, Sobrado-Calvo P, et al. Death and neuroprotection of retinal ganglion cells after different types of injury. Neurotox Res 2000; 2 (2–3): 215–27 Kurimoto T, Miyoshi T, Suzuki A, et al. Apoptotic death of beta cells after optic nerve transection in adult cats. J Neurosci 2003; 23 (10): 4023–8 Chen TA, Yang F, Cole GM, et al. Inhibition of caspase-3-like activity reduces glutamate induced cell death in adult rat retina. Brain Res 2001; 904 (1): 177–88 Kwong JM, Lam TT. N-methyl-D-aspartate (NMDA) induced apoptosis in adult rabbit retinas. Exp Eye Res 2000; 71 (4): 437–44 Weishaupt JH, Diem R, Kermer P, et al. Contribution of caspase-8 to apoptosis of axotomized rat retinal ganglion cells in vivo. Neurobiol Dis 2003; 13 (2): 124–35 Siegmund B, Zeitz M. Pralnacasan (vertex Pharmaceuticals). IDrugs 2003; 6 (2): 154–8 Rudolphi K, Gerwin N, Verzijl N, et al. Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 2003; 11 (10): 738–46 Linton SD, Karanewsky DS, Ternansky RJ, et al. Acyl dipeptides as reversible caspase inhibitors, part 2: further optimization. Bioorg Med Chem Lett 2002; 12 (20): 2973–5 Linton SD, Karanewsky DS, Ternansky RJ, et al. Acyl dipeptides as reversible caspase inhibitors, part 1: initial lead optimization. Bioorg Med Chem Lett 2002; 12 (20): 2969–71 Linton SD, Aja T, Allegrini PR, et al. Oxamyl dipeptide caspase inhibitors developed for the treatment of stroke. Bioorg Med Chem Lett 2004; 14 (10): 2685–91 Linton SD. Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem 2005; 5 (16): 1697–717 Linton SD, Aja T, Armstrong RA, et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease. J Med Chem 2005; 48 (22): 6779–82 Nickells RW. The molecular biology of retinal ganglion cell death: caveats and controversies. Brain Res Bull 2004; 62 (6): 439–46 Wheeler LA, Lai R, WoldeMussie E. From the lab to the clinic: activation of an alpha-2 agonist pathway is neuroprotective in models of retinal and optic nerve injury. Eur J Ophthalmol 1999; 9 Suppl. 1: S17–21 Donello JE, Padillo EU, Webster ML, et al. Alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 2001; 296 (1): 216–23 Lai RK, Chun T, Hasson D, et al. Alpha-2 adrenoceptor agonist protects retinal function after acute retinal ischemic injury in the rat. Vis Neurosci 2002; 19 (2): 175–85 Lafuente MP, Villegas-Perez MP, Sobrado-Calvo P, et al. Neuroprotective effects of alpha(2)-selective adrenergic agonists against ischemia-induced retinal ganglion cell death. Invest Ophthalmol Vis Sci 2001; 42 (9): 2074–84 Lafuente MP, Villegas-Perez MP, Mayor S, et al. Neuroprotective effects of brimonidine against transient ischemia-induced retinal ganglion cell death: a dose response in vivo study. Exp Eye Res 2002; 74 (2): 181–9 Aviles-Trigueros M, Mayor-Torroglosa S, Garcia-Aviles A, et al. Transient ischemia of the retina results in massive degeneration of the retinotectal projection: long-term neuroprotection with brimonidine. Exp Neurol 2003; 184 (2): 767–77 Mayor-Torroglosa S, De la Villa P, Rodriguez ME, et al. Ischemia results 3 months later in altered ERG, degeneration of inner layers, and deafferented tectum: neuroprotection with brimonidine. Invest Ophthalmol Vis Sci 2005; 46 (10): 3825–35 Yoles E, Wheeler LA, Schwartz M. Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 1999; 40 (1): 65–73 Baptiste DC, Hartwick AT, Jollimore CA, et al. Comparison of the neuroprotective effects of adrenoceptor drugs in retinal cell culture and intact retina. Invest Ophthalmol Vis Sci 2002; 43 (8): 2666–76 Kalapesi FB, Coroneo MT, Hill MA. Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol 2005; 89 (6): 758–63 Chao HM, Chidlow G, Melena J, et al. An investigation into the potential mechanisms underlying the neuroprotective effect of clonidine in the retina. Brain Res 2000; 877 (1): 47–57 Chao HM, Osborne NN. Topically applied clonidine protects the rat retina from ischaemia/reperfusion by stimulating alpha(2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res 2001; 904 (1): 126–36 Gao H, Qiao X, Cantor LB, et al. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol 2002; 120 (6): 797–803 Kent AR, Nussdorf JD, David R, et al. Vitreous concentration of topically applied brimonidine tartrate 0.2%. Ophthalmology 2001; 108 (4): 784–7 Acheampong AA, Shackleton M, John B, et al. Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. Drug Metab Dispos 2002; 30 (4): 421–9 Evans DW, Hosking SL, Gherghel D, et al. Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. Br J Ophthalmol 2003; 87 (12): 1463–5 Krupin T, Leibmann JM, Greenfield DS, et al. The Low-pressure Glaucoma Treatment Study (LoGTS) study design and baseline characteristics of enrolled patients. Ophthalmology 2005; 112 (3): 376–85 Osborne NN, Cazevieille C, Carvalho AL, et al. In vivo and in vitro experiments show that betaxolol is a retinal neuroprotective agent. Brain Res 1997; 751 (1): 113–23 Osborne NN, DeSantis L, Bae JH, et al. Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res 1999; 69 (3): 331–42 Wood JP, DeSantis L, Chao HM, et al. Topically applied betaxolol attenuates ischaemia-induced effects to the rat retina and stimulates BDNF mRNA. Exp Eye Res 2001; 72 (1): 79–86 Wood JP, Schmidt KG, Melena J, et al. The beta-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Exp Eye Res 2003; 76 (4): 505–16 Cheon EW, Park CH, Kang SS, et al. Betaxolol attenuates retinal ischemia/reperfusion damage in the rat. Neuroreport 2003; 14 (15): 1913–7 Mantyh PW, Rogers SD, Allen CJ, et al. Beta 2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit, and human. J Neurosci 1995; 15 (1 Pt 1): 152–64 Osborne NN, Wood JP, Chidlow G, et al. Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma. Brain Res Bull 2004; 62 (6): 525–8 Gross RL, Hensley SH, Gao F, et al. Retinal ganglion cell dysfunction induced by hypoxia and glutamate: potential neuroprotective effects of beta-blockers. Surv Ophthalmol 1999; 43 Suppl. 1: S162–70 Hirooka K, Kelly ME, Baldridge WH, et al. Suppressive actions of betaxolol on ionic currents in retinal ganglion cells may explain its neuroprotective effects. Exp Eye Res 2000; 70 (5): 611–21 Melena J, Stanton D, Osborne NN. Comparative effects of antiglaucoma drugs on voltage-dependent calcium channels. Graefes Arch Clin Exp Ophthalmol 2001; 239 (7): 522–30 Zhang J, Wu SM, Gross RL. Effects of beta-adrenergic blockers on glutamate-induced calcium signals in adult mouse retinal ganglion cells. Brain Res 2003; 959 (1): 111–9 Chidlow G, Melena J, Osborne NN. Betaxolol, a beta(1)-adrenoceptor antagonist, reduces Na(+) influx into cortical synaptosomes by direct interaction with Na(+) channels: comparison with other beta-adrenoceptor antagonists. Br J Pharmacol 2000; 130 (4): 759–66 Melena J, Wood JP, Osborne NN. Betaxolol, a betal-adrenoceptor antagonist, has an affinity for L-type Ca2+ channels. Eur J Pharmacol 1999; 378 (3): 317–22 Agarwal N, Martin E, Krishnamoorthy RR, et al. Levobetaxolol-induced up-regulation of retinal bFGF and CNTF mRNAs and preservation of retinal function against a photic-induced retinopathy. Exp Eye Res 2002; 74 (4): 445–53 DeSantis L, Dahlin D, Barnes G. A role for the calcium channel blocking-like action of betaxolol for providing therapeutic benefit to glaucoma patients. In: Drance SM, editor. Update to glaucoma, ocular blood flow and drug treatment. Amsterdam: Kugler, 1995: 137–43 Messmer C, Flammer J, Stumpfig D. Influence of betaxolol and timolol on the visual fields of patients with glaucoma. Am J Ophthalmol 1991; 112 (6): 678–81 Collignon-Brach J. Long-term effect of ophthalmic beta-adrenoceptor antagonists on intraocular pressure and retinal sensitivity in primary open-angle glaucoma. Curr Eye Res 1992; 11 (1): 1–3 Collignon-Brach J. Longterm effect of topical beta-blockers on intraocular pressure and visual field sensitivity in ocular hypertension and chronic open-angle glaucoma. Surv Ophthalmol 1994; 38 Suppl.: S149–55 Kaiser HJ, Flammer J, Stumpfig D, et al. Longterm visual field follow-up of glaucoma patients treated with beta-blockers. Surv Ophthalmol 1994; 38 Suppl.: S156–9 Drance SM. A comparison of the effects of betaxolol, timolol, and pilocarpine on visual function in patients with open-angle glaucoma. J Glaucoma 1998; 7 (4): 247–52 Vainio-Jylha E, Vuori ML. The favorable effect of topical betaxolol and timolol on glaucomatous visual fields: a 2-year follow-up study. Graefes Arch Clin Exp Ophthalmol 1999; 237 (2): 100–4 Araie M, Azuma I, Kitazawa Y. Influence of topical betaxolol and timolol on visual field in Japanese open-angle glaucoma patients. Jpn J Ophthalmol 2003; 47 (2): 199–207 Rainer G, Dorner GT, Garhofer G, et al. Changing antiglaucoma therapy from timolol to betaxolol: effect on ocular blood flow. Ophthalmologica 2003; 217 (4): 288–93 Miki H, Miki K. The effects on the intraocular pressure and visual field resulting from a switch in the treatment from timolol to betaxolol. J Ocul Pharmacol Ther 2004; 20 (6): 509–17 Goto W, Ota T, Morikawa N, et al. Protective effects of timolol against the neuronal damage induced by glutamate and ischemia in the rat retina. Brain Res 2002; 958 (1): 10–9 Kashiwagi K, Iizuka Y, Tsukahara S. Neuroprotective effects of nipradilol on purified cultured retinal ganglion cells. J Glaucoma 2002; 11 (3): 231–8 Seki M, Tanaka T, Matsuda H, et al. Topically administered timolol and dorzolamide reduce intraocular pressure and protect retinal ganglion cells in a rat experimental glaucoma model. Br J Ophthalmol 2005; 89 (4): 504–7 Sarup V, McEwan GC, Thompson C, et al. Dorzolamide and timolol saves retinal ganglion cells in glaucomatous adult rats. J Ocul Pharmacol Ther 2005; 21 (6): 454–62 Diaz F, Villena A, Moreno M, et al. Effects of a non-selective beta-blocker on adult rat anterograde axonal transport and retinal ganglion layer after increased intraocular pressure. Histol Histopathol 2005; 20 (4): 1077–84 Nakazawa T, Tomita H, Yamaguchi K, et al. Neuroprotective effect of nipradilol on axotomized rat retinal ganglion cells. Curr Eye Res 2002; 24 (2): 114–22 Melena J, Osborne NN. Metipranolol attenuates lipid peroxidation in rat brain: a comparative study with other antiglaucoma drugs. Graefes Arch Clin Exp Ophthalmol 2003; 241 (10): 827–33 Tan AY, LeVatte TL, Archibald ML, et al. Timolol concentrations in rat ocular tissues and plasma after topical and intraperitoneal dosing. J Glaucoma 2002; 11 (2): 134–42 Osborne NN, Wood JP. Metipranolol blunts nitric oxide-induced lipid peroxidation and death of retinal photoreceptors: a comparison with other anti-glaucoma drugs. Invest Ophthalmol Vis Sci 2004; 45 (10): 3787–95 Osborne NN, Wood JP. The beta-adrenergic receptor antagonist metipranolol blunts zinc-induced photoreceptor and RPE apoptosis. Invest Ophthalmol Vis Sci 2006; 47 (7): 3178–86 Kudo H, Nakazawa T, Shimura M, et al. Neuroprotective effect of latanoprost on rat retinal ganglion cells. Graefes Arch Clin Exp Ophthalmol 2006; 244 (8): 1003–9 Drago F, Valzelli S, Emmi I, et al. Latanoprost exerts neuroprotective activity in vitro and in vivo. Exp Eye Res 2001; 72 (4): 479–86 Melamed S. Neuroprotective properties of a synthetic docosanoid, unoprostone isopropyl: clinical benefits in the treatment of glaucoma. Drugs Exp Clin Res 2002; 28 (2-3): 63–73 Fuchsjager-Mayrl G, Wally B, Rainer G, et al. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br J Ophthalmol 2005; 89 (10): 1293–7