Generalized vortex methods for free surface flow problems. II: Radiating waves

Springer Science and Business Media LLC - Tập 4 - Trang 237-259 - 1989
Gregory R. Baker1, Daniel I. Meiron2, Steven A. Orszag3
1Mathematics Department, Ohio State University, Columbus
2Applied Mathematics 217-50, California Institute of Technology, Pasadena
3Applied and Computational Mathematics, Princeton University, Princeton

Tóm tắt

Generalized vortex methods are applied to the study of free surface motion in incompressible, irrotational, inviscid, layered flows in which waves are generated by external means, such as the motion of submerged bodies. Radiation conditions are developed that allow outward-traveling waves to escape the computational domain without significant reflection. Numerical sponge layers are used to absorb outward-traveling waves. Applications are given to wave generation by surface pressure distributions and by translating submerged bodies.

Tài liệu tham khảo

Baker, G. R. (1980). A test of the method of Fink and Soh for following vortex-sheet motion,J. Fluid Mech. 100, 209. Baker, G. R., McCrory, R. L., Verdon, C. P., and Orszag, S. A. (1987). Rayleigh-Taylor instability of fluid layers,J. Fluid Mech. 178, 161. Baker, G. R., Meiron, D. I., and Orszag, S. A. (1980). Vortex simulations of the Rayleigh-Taylor instability,Phys. Fluids 23, 1485. Baker, G. R., Meiron, D. I., and Orszag, S. A. (1981). Applications of a generalized vortex method to nonlinear free-surface flows, inProc. 3nd Int. Conf. Numerical Ship Hydrodynamics, Dern, J. C., and Haussling, H. (eds.), Paris, p. 179. Baker, G. R., Meiron, D. I., and Orszag, S. A. (1982). Generalized vortex methods for free-surface flow problems,J. Fluid Mech. 123, 477. Bender, C. M., and Orszag, S. A. (1978).Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York. Doctors, L. J., and Dagan, G. (1980). Comparison of nonlinear wave-resistance theories for a two-dimensional pressure distribution,J. Fluid Mech. 98, 647. Faltinsen, O. M. (1977). Numerical solution of transient nonlinear free-surface motion outside or inside moving bodies, inProc. 2nd Int. Conf. Numerical Ship Hydrodynamics, Wehausen and Salvesen (eds.), p. 347. Haussling, H. J., and Coleman, R. M. (1979). Nonlinear water waves generated by an accelerated circular cylinder,J. Fluid Mech. 92, 767. Isaacson, M. de St. Q. (1982). Nonlinear-wave effects on fixed and floating bodies,J. Fluid Mech. 120, 267. Israeli, M., and Orszag, S. A. (1981). Approximation of radiation boundary conditions,J. Comput. Phys. 41, 115. Kellog, O. D. (1953).Foundations of Potential Theory, Dover, New York. Landweber, L., and Yih, C. S. (1956). Forces, moments and added masses for Rankine bodies,J. Fluid Mech. 1, 319. Longuet-Higgins, M. S., and Cokelet, E. D. (1976). The deformation of steep surface waves on water. I. A Numerical method of computation,Proc. R. Soc. London Ser. A 350, 1. Moore, D. W. (1983). Resonances introduced by discretization,IMA J. Appl. Math. 31, 1. Tuck, E. O. (1965). The effect of non-linearity at the free surface on flow past a submerged cylinder,J. Fluid Mech. 22, 401. von Kerczek, C., and Salvesen, N. (1977). Nonlinear free-surface effects—The dependence on Froude number, inProc. 2nd Int. Conf. Numerical Ship Hydrodynamics, Wehausen, J., and Salvesen, N. (eds.), University of California, Berkeley, p. 292.