Convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk motion–compensated diffusion‐weighted MRI

Magnetic Resonance in Medicine - Tập 77 Số 2 - Trang 717-729 - 2017
Eric Aliotta1,2, Holden H. Wu1,2, Daniel B. Ennis1,2
1Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California, USA.
2Department of Radiological Sciences, University of California, Los Angeles, California, USA

Tóm tắt

PurposeTo evaluate convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk motion–compensated diffusion‐weighted imaging (DWI).MethodsDiffusion‐encoding gradient waveforms were designed for a range of b‐values and spatial resolutions with and without motion compensation using the CODE framework. CODE, first moment (M1) nulled CODE‐M1, and first and second moment (M2) nulled CODE‐M1M2 were used to acquire neuro, liver, and cardiac ADC maps in healthy subjects (n=10) that were compared respectively to monopolar (MONO), BIPOLAR (M1 = 0), and motion‐compensated (MOCO, M1 + M2 = 0) diffusion encoding.ResultsCODE significantly improved the SNR of neuro ADC maps compared with MONO (19.5 ± 2.5 versus 14.5 ± 1.9). CODE‐M1 liver ADCs were significantly lower (1.3 ± 0.1 versus 1.8 ± 0.3 × 10−3 mm2/s, ie, less motion corrupted) and more spatially uniform (6% versus 55% ROI difference) than MONO and had higher SNR than BIPOLAR (SNR = 14.9 ± 5.3 versus 8.0 ± 3.1). CODE‐M1M2 cardiac ADCs were significantly lower than MONO (1.9 ± 0.6 versus 3.8 ± 0.3 x10−3 mm2/s) throughout the cardiac cycle and had higher SNR than MOCO at systole (9.1 ± 3.9 versus 7.0 ± 2.6) while reporting similar ADCs (1.5 ± 0.2 versus 1.4 ± 0.6 × 10−3 mm2/s).ConclusionsCODE significantly improved SNR for ADC mapping in the brain, liver and heart, and significantly improved DWI bulk motion robustness in the liver and heart. Magn Reson Med 77:717–729, 2017. © 2016 International Society for Magnetic Resonance in Medicine

Từ khóa


Tài liệu tham khảo

10.1161/CIRCIMAGING.108.778902

10.1088/0031-9155/58/15/5009

10.1148/radiol.13121811

10.2463/mrms.4.175

Demir OI, 2007, Contribution of diffusion‐weighted MRI to the differential diagnosis of hepatic masses, Diagn Interv Radiol, 13, 81

10.1007/s00330-007-0785-9

10.1007/s00330-007-0798-4

10.1002/jmri.1072

10.1002/mrm.21127

10.1007/s10334-009-0183-1

10.1002/mrm.22748

10.1097/RLI.0b013e31822438e8

10.1148/radiol.2241011117

10.1002/jmri.21569

10.1148/radiol.13131572

10.1002/mrm.1910320320

10.1007/s00330-008-0968-z

10.1002/jmri.23796

Nguyen C, 2014, In vivo three‐dimensional high resolution cardiac diffusion‐weighted MRI: a motion compensated diffusion‐prepared balanced steady‐state free precession approach, Magn Reson Med, 16

Stoeck CT, 2015, Second‐order motion‐compensated spin echo diffusion tensor imaging of the human heart, Magn Reson Med, 17, P81

10.1109/TMI.2015.2411571

10.1002/mrm.10666

10.1002/mrm.25059

Gel'fand IM, 1963, Calculus of Variations, Rev. English Ed

10.1080/10556788.2010.517532

10.1002/mrm.1910390413

10.1002/mrm.1910400411

10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M

10.1002/mrm.21183

10.1002/mrm.21615

10.1002/mrm.24120

10.1148/radiology.156.3.4023236

Holm S, 1979, A simple sequentially rejective multiple test procedure, Scand J Stat, 65

10.1109/TMI.2010.2045126

10.1002/mrm.20642

10.1002/mrm.21132

10.1002/mrm.1910320116

10.1016/j.media.2013.10.009

10.1002/mrm.25440

10.1002/mrm.25038

10.1186/1532-429X-17-S1-P388

AliottaE RapacchiS HuP EnnisD. In Vivo Spin Echo EPI Cardiac Diffusion Tensor MRI Using Ultra‐High Gradient Amplitudes. Proceedings of the 23rd Annual Meeting of ISMRM Toronto Canada 2015. Abstract 2639.

10.1016/j.jmr.2012.04.010

10.1002/jmri.21350

10.1002/mrm.10171