rs61991156 in miR-379 is associated with low capability of glycolysis of gastric cancer by enhanced regulation of PKM2
Tóm tắt
Glycolysis is an important metabolic oncogenic change also play a pivot role in the Warburg effect. Glycolysis related gene PKM2 expressed differently individually. Presently, we sought to investigate the effect of single nucleotide polymorphism (SNP) at rs61991156 of miR-379 on gastric cancer (GC) proliferation and metabolism. The genotype of rs61991156 in miR-379 was investigated by using real-time PCR. The glycolysis-related metabolites were determined by using GC–TOF–MS. The biological effects of rs61991156 in miR-379 was explored by in vitro studies. In this study, we found that rs61991156 in miR-379 was involved in the occurrence of GC by acting on the 3′UTR region of PKM2. The clinical data analysis revealed that A > G in rs187960998 was significantly associated with better differentiation, small tumor size, and non-metastasis. In vitro study further revealed that A > G SNP of miR-379 could decrease GC cell proliferation as well as the promoter activity and expression of PKM2. The glycolysis of the patients with miR-379 GG genotype was significantly lower than AG and AA genotype by metabolomics analysis. The patients with AA genotype have significantly lower PKM2 expression compared to the G carrier, while there is no significant expression difference in miR-379 expression. Patients with AA genotype have significantly shorter survival rate compared to the G carrier. rs61991156 in miR-379 was highly associated with a decreased risk, well differentiation and better post-surgery survival in Chinese population by inhibiting the expression of PKM2.
Tài liệu tham khảo
Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors. Front Oncol. 2017;7:40.
Schwartz L, Supuran CT, Alfarouk KO. The warburg effect and the hallmarks of cancer. Anticancer Agents Med Chem. 2017;17:164–70.
Zhang LF, Jiang S, Liu MF. MicroRNA regulation and analytical methods in cancer cell metabolism. Cell Mol Life Sci. 2017;74:2929–41.
Mitchell MI, Engelbrecht AM. Metabolic hijacking: a survival strategy cancer cells exploit? Crit Rev Oncol Hematol. 2017;109:1–8.
Schwartz L, Seyfried T, Alfarouk KO, Da Veiga Moreira J, Fais S. Out of Warburg effect: an effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin Cancer Biol. 2017;43:134–8.
Wu H, Wang Y, Wu C, Yang P, Li H, Li Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J Agric Food Chem. 2016;64:9356–67.
Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT, Chen J, Luk JM. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS ONE. 2014;9:e86872.
Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–93.
Sun Y, Zhao X, Zhou Y, Hu Y. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 2012;28:1346–52.
SanGiovanni JP, SanGiovanni PM, Sapieha P, De Guire V. miRNAs, single nucleotide polymorphisms (SNPs) and age-related macular degeneration (AMD). Clin Chem Lab Med. 2017;55:763–75.
Simchovitz A, Heneka MT, Soreq H. Personalized genetics of the cholinergic blockade of neuroinflammation. J Neurochem. 2017;142(Suppl 2):178–87.
Rajendran A, Chatterjee A, Pan A. Computational approaches and related tools to identify MicroRNAs in a species: A Bird’s Eye View. Interdiscip Sci. 2017; (Epub ahead of print).
Cai C, Ashktorab H, Pang X, Zhao Y, Sha W, Liu Y, Gu X. MicroRNA-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor CHD5. PLoS ONE. 2012;7:e29750.
Rigalli JP, Ciriaci N, Arias A, Ceballos MP, Villanueva SS, Luquita MG, Mottino AD, Ghanem CI, Catania VA, Ruiz ML. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line: impact on sorafenib cytotoxicity. PLoS ONE. 2015;10:e0119502.
Gururajan M, Josson S, Chu GC, Lu CL, Lu YT, Haga CL, Zhau HE, Liu C, Lichterman J, Duan P, Posadas EM, Chung LW. miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res. 2014;20:6559–69.
Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007;16:1124–31.
Gottwein E, Cai X, Cullen BR. A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol. 2006;80:5321–6.
Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, Chen Y, Shen H. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118:2600–8.
Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29:1963–6.
Liang J, Chen P, Hu Z, Zhou X, Chen L, Li M, Wang Y, Tang J, Wang H, Shen H. Genetic variants in fibroblast growth factor receptor 2 (FGFR2) contribute to susceptibility of breast cancer in Chinese women. Carcinogenesis. 2008;29:2341–6.