Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ2 conformation by intra-residue NOEs

Journal of Biomolecular NMR - Tập 51 Số 4 - Trang 425-435 - 2011
Yohei Miyanoiri1, Mitsuhiro Takeda1, Jun-Goo Jee2, Akira Ono2, Kosuke Okuma2, Tsutomu Terauchi2, Masatsune Kainosho2
1Graduate School of Science, Structural Biology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
2Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amir-Heidari B, Thirlway J, Micklefield J (2007) Stereochemical course of tryptophan dehydrogenation during biosynthesis of the calcium-dependent lipopeptide antibiotics. Org Lett 9:1513–1516

Bak B, Dambmann C, Nicolaisen F (1967) Hydrogen-deuterium exchange in tryptophan. Acta Chem Scand 21:1674–1675

Bax A, Summers MF (1986) Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094

Bax A, Clore GM, Gronenborn AM (1990) Proton-proton correlation via isotropic mixing of carbon-13 magnetization, a new three-dimensional approach for assigning proton and carbon-13 spectra of carbon-13-enriched proteins. J Magn Reson 88:425–431

Billeter M, Braun W, Wüthrich K (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra computation of sterically allowed proton–proton distances and statistical analysis of proton–proton distances in single crystal protein conformations. J Mol Biol 155:321–346

Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

Boroda E, Rakowska S, Kański R, Kańska M (2003) Enzymatic synthesis of l-tryptophan and 5′-hydroxy-l-tryptophan labeled with deuterium and tritium at the α-carbon position. J Label Compd Radiopharm 46:691–698

Carlomagno T, Maurer M, Sattler M, Schwendiger MG, Glaser SJ, Griesinger C (1996) PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to Cα, C′ transfer and Cβ, Caromatic correlations. J Biomol NMR 8:161–170

Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ, Rance M, Skelton NJ (2006) Protein NMR spectroscopy: principles and practice, 2nd edn. Academic Press, San Diego

Dunbrack RL Jr, Cohen FE (1997) Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 6:1661–1681

Dunbrack RL Jr, Karplus M (1993) Backbone-dependent rotamer library for proteins: applications to side-chain prediction. J Mol Biol 230:543–574

Fesik SW, Eaton HL, Olenjniczak ET, Zuiterweg ERP, McIntosh LP, Dahlquist FW (1990) 2D and 3D NMR spectroscopy employing 13C–13C magnetization transfer by isotropic mixing. Spin system identification in large proteins. J Am Chem Soc 112:886–888

Gassman PG, Van Bergen TJ (1974) Oxindoles. New, general method of synthesis. J Am Chem Soc 96:5508–5511

Graf T (1992) Myb: a transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr Opin Genet Dev 2:249–255

Grzesiek S, Bax A (1995) Audio-Frequency NMR in a nutating frame. Application to the assignment of phenylalanine residues in isotopically enriched proteins. J Am Chem Soc 117:6527–6531

Heidelberger C (1949) The synthesis of Dl-tryptophan-beta-C14, indole-3-acetic acid-alpha-C14, and Dl-tryptophan-3–C14. J Biol Chem 179:139–142

Ilić N, Cohen JD (2004) Synthesis of [13C]-isotopomers of indole and tryptophan for use in the analysis of indole-3-acetic acid biosynthesis. J Label Compd Radiopharm 47:635–646

Jacob J, Louis JM, Nesheiwat I, Torchia DA (2002) Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins. J Biomol NMR 24:231–235

Kainosho M, Güntert P (2009) SAIL–stereo-array isotope labeling. Q Rev Biophys 42:247–300

Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

Kay LE, Marion D, Bax A (1989) Practical aspects of 3D heteronuclear NMR of proteins. J Magn Reson 84:7284

Lautie MF (1979) Syntheses of specifically deuterated indoles. J Label Compd Radiopharm 22:735–744

Leete E, Wemple JN (1969) Biosynthesis of the Cinchona alkaloids. II. The incorporation of tryptophan-1-15N,2-14C and geraniol-3-14C into quinine. J Am Chem Soc 91:2698–2702

Liu Z, Yuan Q, Wang W (2009) Biosynthesis of [1-15N] l-tryptophan from 15N labeled anthranilic acid by fermentation of Candida utilis mutant. Amino Acids 36:71–73

Löhr F, Rogov VV, Shi M, Bernhard F, Dötsch V (2005) Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues. J Biomol NMR 32:309–328

Myrset AH, Bostad A, Jamin N, Lirsac PN, Toma F, Gabrielsen OS (1993) DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. EMBO J 12:4625–4633

Norton RS, Bradbury JH (1976) Kinetics of hydrogen-deuterium exchange of tryptophan and tryptophan peptides in deutero-trifluoroacetic acid using proton magnetic resonance spectroscopy. Molecul Cell Biochem 12:103–111

Oba M, Ueno R, Fukuoka (nee Yoshida) M, Kainosho M, Nishiyama K (1995) Synthesis of L-threo-[1-13C,2,3-2H2] and l-erythro-[1-13C,2,3-2H2]amino-acids: novel probes for conformational analysis of peptide side-chains. J Chem Soc Perkin Trans 1:1603–1609

Oba Y, Kato S, Ojika M, Inouye S (2002) Biosynthesis of luciferin in the sea firefly, Cypridina hilgendorfii: l-tryptophan is a component in Cypridina luciferin. Tetrahedron Lett 43:2389–2392

Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Yoshifumi N (1994) Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79:639–648

Osborne A, Teng Q, Miles EW, Phillips RS (2003) Detection of open and closed conformations of tryptophan synthase by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-15N-L-tryptophan. J Biol Chem 278:44083–44090

Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400

Ponder JW, Richards FM (1987) Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 193:775–791

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, Cambridge

Prompers JJ, Groenewegen A, van Schaik RC, Pepermans HA, Hilbers C (1997) 1H, 13C, and 15N resonance assignments of Fusarium solani pisi cutinase and preliminary features of the structure in solution. Protein Sci 6:2375–2384

Rajesh S, Nietlispach D, Nakayama H, Takio K, Laue ED, Shibata T, Ito Y (2003) A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp. J Biomol NMR 27:81–86

Saito I, Sugiyama H, Yamamoto A, Muramatsu S, Matsuda T (1984) Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model. J Am Chem Soc 106:4286–4287

Schrauber H, Eisenhaber F, Argos P (1993) Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J Mol Biol 230:592–612

Soledade M, Pedras C, Okinyo DPO (2006) Syntheses of perdeuterated indoles and derivatives as probes for the biosyntheses of crucifer phytoalexins. J Label Compd Radiopharm 49:33–45

Sørensen MD, Meissner A, Sørensen OW (1997) Spin-state-selective coherence transfer via intermediate states of two-spin coherence in IS spin systems: application to E.COSY-type measurement of J coupling constants. J Biomol NMR 10:181–186

Takeda M, Chang CK, Ikeya T, Güntert P, Chang YH, Hsu YL, Huang TH, Kainosho M (2008) Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol 380:608–622

Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2009) Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts. J Am Chem Soc 131:18556–18562

Takeda M, Ono AM, Terauchi T, Kainosho M (2010) Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. J Biomol NMR 46:45–49

Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, Sarai A (1993) Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain. Proc Natl Acad Sci USA 90:9320–9324

Teilum K, Brath U, Lundström P, Akke M (2006) Biosynthetic 13C labeling of aromatic side chains in proteins for NMR relaxation measurements. J Am Chem Soc 128:2506–2507

Terauchi T, Kobayashi K, Okuma K, Oba M, Nishiyama N, Kainosho M (2008) Stereoselective synthesis of triply isotope-labeled Ser, Cys, and Ala: amino acids for stereoarray isotope labeling technology. Org Lett 10:2785–2787

Terauchi T, Kamikawai T, Vinogradov MG, Starodubtseva EV, Takeda M, Kainosho M (2011) Synthesis of stereoarray isotope labeled (SAIL) lysine via the “Head-to-Tail” conversion of SAIL glutamic acid. Org Lett 13:161–163

Tilstam U, Harre M, Heckrodt T, Weinmann H (2001) A mild and efficient dehydrogenation of indolines. Tetrahedron Lett 42:5385–5387

Torizawa T, Ono AM, Terauchi T, Kainosho M (2005) NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. J Am Chem Soc 127:12620–12626

Unkefer CJ, Lodwig SN, Silks LA, Hanners JL, Ehler DS, Gibson R (1991) Stereoselective synthesis of stable isotope-labeled L-α-amino acids: Chemomicrobiological synthesis of L-[β-13C]-, L-[2′-13C]-, and L-[1′-15N]tryptophan. J Label Compd Radiopharm 34:1247–1256

van den Berg EMM, Baldew AU, de Goede ATJW, Raap J, Lugtenburg J (1988) Synthesis of three isotopomers of L-tryptophan via a combination of organic synthesis and biotechnology. Recl Trav Chim Pays-Bas 107:73–81

van den Berg EMM, van Liemt WBS, Heemkerk B, Lugtenburg J (1989) Synthesis of indole and L-tryptophans specifically 2H- or 13C-labelled in the six-membered ring. J Recl Trav Chim Pays-Bas 108:304–313

van den Berg EMM, Jansen FJHM, de Goede ATJW, Baldew AU, Lugtenburg J (1990) Chemo-enzymatic synthesis and characterization of L-tryptophans selectively 13C-enriched or hydroxylated in the six-membered ring using transformed Escherichia coli cells. Recl Trav Chim Pays-Bas 109:287–297

Vederas JC, Schleicher E, Tsai MD, Floss HG (1978) Stereochemistry and mechanism of reactions catalyzed by tryptophanase from Escherichia coli. J Biol Chem 253:5350–5354

Wang H, Janowick DA, Schkeryantz JM, Liu X, Fesik SW (1999) A method for assigning phenylalanines in proteins. J Am Chem Soc 121:1611–1612

Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

Yamazaki T, Forman-Kay JD, Kay LE (1993) Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055

Yaw WM, Gawrisch K (1999) Deuteration of indole and N-methylindole by Raney nickel catalysis. J Label Compd Radiopharm 42:709–713

Yuan SS, Ajami AM (1982) Synthesis of 13C and 15N labelled (S)-Tryptophan. Tetrahedron 38:2051–2053