MiR-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells
Tóm tắt
Our previous studies showed that SIRT1 was over-expressed in gastric cancer specimens and related with lymph node metastasis. However, the mechanism of SIRT1 up-regulation and its association with metastasis in gastric cancer remain unclear. The present study was undertaken to understand the role of microRNA in regulation of SIRT1 in the progression of gastric cancer. Expression of miR-204 and SIRT1 was assessed in two gastric cancer cell lines and 24 matched cancer specimens. Luciferase reporter assay was carried to verify that miR-204 targeting SIRT1. Cell invasion ability of AGS and BGC was detected by transwell invasion assay. Annexin V/PI assay was used to investigate the cell sensitivity of anoikis. Western blot analysis to assess SIRT1, Vimentin, E-Cadherin, LKB1, and β-actin expression was performed in gastic cancer cell lines. SIRT1 was defined as the target gene and elucidated the biological functions of miR-204 with a luciferase reporter assay and Western blot analysis. We verified that miR-204 levels were down-regulated and significantly associated with the up-regulation of SIRT1 mRNA levels in gastric cancer specimens. Over-expression of miR-204 reduced cell invasion and anoikis resistance in gastric cancer cells. Up-regulation of miR-204 influenced the levels of the epithelial mesenchymal transition (EMT)-associated genes, increasing E-cadherin levels and decreasing Vimentin levels. We demonstrated that the regulation of EMT by miR-204 involves cooperation with LKB1. Furthermore, silencing of SIRT1 phenocopied the effects of miR-204 in gastric cancer cells. These data demonstrate that miR-204 plays an important role in regulating metastasis of gastric cancer, which is involved in post-transcriptional repression of SIRT1. Our results suggest that down-regulation of miR-204 promotes gastric cancer cell invasion by activating the SIRT1-LKB1 pathway. These data demonstrate that miR-204 plays an important role in regulating metastasis of gastric cancer, which is involved in post-transcriptional repression of SIRT1.
Tài liệu tham khảo
Wang F, Sun GP, Zou YF, Hao JQ, Zhong F, Ren WJ: MicroRNAs as promising biomarkers for gastric cancer. Cancer Biomark. 2011, 11: 259-267.
Yin Y, Li J, Chen S, Zhou T, Si J: MicroRNAs as Diagnostic Biomarkers in Gastric Cancer. Int J Mol Sci. 2012, 13: 12544-12555. 10.3390/ijms131012544.
Zheng L, Pu J, Qi T, Qi M, Li D, Xiang X, Huang K, Tong Q: MicroRNA-145 targets v-ets erythroblast sis virus E26 oncogene homolog 1 to suppress the invasion, metastasis and angiogenesis of gastric cancer cells. Mol Cancer Res. 2013, 11: 182-193. 10.1158/1541-7786.MCR-12-0534.
Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7: 131-142. 10.1038/nrm1835.
Voulgari A, Pintzas A: Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009, 1796: 75-90.
Du C, Zhang C, Hassan S, Biswas MH, Balaji KC: Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res. 2010, 70: 7810-7819. 10.1158/0008-5472.CAN-09-4481.
Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, Calin G, Wang H, Siefker-Radtke A, McConkey D, et al: MiR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res. 2009, 15: 5060-5072. 10.1158/1078-0432.CCR-08-2245.
Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y, Hibi T: Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with down regulation of Mcl-1 in human gastric cancer cells. Oncogene. 2009, 28: 2738-2744. 10.1038/onc.2009.140.
Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, Goydos J, Ray A, Perera RJ: The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One. 2010, 5: e13779-10.1371/journal.pone.0013779.
Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y, et al: MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010, 6: e1000879-10.1371/journal.pgen.1000879.
Wang X, Huang G, Mei S, Qian J, Ji J, Zhang J: Over-expression of C/EBP-alpha induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-gamma. Biochem Biophys Res Commun. 2009, 380: 286-291. 10.1016/j.bbrc.2009.01.060.
Feng AN, Zhang LH, Fan XS, Huang Q, Ye Q, Wu HY, Yang J: Expression of SIRT1 in gastric cardiac cancer and its clinicopathologic significance. Int J Surg Pathol. 2011, 19: 743-750. 10.1177/1066896911412181.
Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z, Chun-Sheng K: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radio resistance by targeting PTEN. BMC Cancer. 2010, 10: 367-10.1186/1471-2407-10-367.
Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ: MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010, 46: 2295-2303. 10.1016/j.ejca.2010.05.012.
Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y, Wang X, Zhao Q, Ding J, Wu K, Fan D: MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med. 2011, 15: 1887-1895. 10.1111/j.1582-4934.2010.01194.x.
Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9: 265-273. 10.1038/nrc2620.
Brabletz S, Brabletz T: The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer?. EMBO Rep. 2010, 11: 670-677. 10.1038/embor.2010.117.
Sanchez-Tillo E, Siles L, de-Barrios O, Cuatrecasas M, Vaquero EC, Castells A, Postigo A: Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res. 2010, 1: 897-912.
Sanchez-Tillo E, de-Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A: Beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA. 2011, 108: 19204-19209. 10.1073/pnas.1108977108.
Savagner P: The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol. 2010, 21 (Suppl 7): vii89-vii92.
Klymkowsky MW, Savagner P: Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol. 2009, 174: 1588-1593. 10.2353/ajpath.2009.080545.
Lee JM, Dedhar S, Kalluri R, Thompson EW: The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006, 172: 973-981. 10.1083/jcb.200601018.
Zavadil J, Haley J, Kalluri R, Muthuswamy SK, Thompson E: Epithelial-mesenchymal transition. Cancer Res. 2008, 68: 9574-9577. 10.1158/0008-5472.CAN-08-2316.
Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA: Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008, 68: 3645-3654. 10.1158/0008-5472.CAN-07-2938.
Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009, 27: 2059-2068. 10.1002/stem.154.
Roy BC, Kohno T, Iwakawa R, Moriguchi T, Kiyono T, Morishita K, Sanchez-Cespedes M, Akiyama T, Yokota J: Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer. 2010, 70: 136-145. 10.1016/j.lungcan.2010.02.004.
Cheng H, Liu P, Wang ZC, Zou L, Santiago S, Garbitt V, Gjoerup OV, Iglehart JD, Miron A, Richardson AL, et al: SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal. 2009, 2: ra35-10.1126/scisignal.2000369.
Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, Jin H, He Y, Gu Q, Xu X: Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes. 2012, 61: 217-228. 10.2337/db11-0416.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/13/290/prepub