The MOGREPS short‐range ensemble prediction system

Quarterly Journal of the Royal Meteorological Society - Tập 134 Số 632 - Trang 703-722 - 2008
Neill E. Bowler1, Alberto Arribas1, Kenneth R. Mylne1, K. B. Robertson1, Sarah E. Beare1
1Met Office, Exeter, UK

Tóm tắt

AbstractThe Met Office has recently introduced a short‐range ensemble prediction system known as MOGREPS. This system consists of global and regional ensembles, with the global ensemble providing the boundary conditions and initial‐condition perturbations for the regional ensemble. Perturbations to the initial conditions are calculated using the ensemble transform Kalman filter, which is a computationally‐efficient version of the ensemble Kalman filter. Model uncertainties are represented in the system through a series of schemes designed to tackle the structural and subgrid‐scale sources of model error.This paper describes the set‐up of the system, and provides justification for the initial‐condition and model perturbation schemes chosen. An outline of the structure of the perturbations generated by the system is presented, along with performance results, including verification from case studies and routine running.MOGREPS has been on trial within the operational suite at the Met Office since August 2005. On 20 October 2006 it was decided that this system should be made fully operational, with implementation expected in summer 2008. Results show a good performance. The regional ensemble is more skilful than the global ensemble, and compares favourably to the ECMWF ensemble for the forecast variables examined in this study. © Crown Copyright 2008. Reproduced with the permission of the Controller of HMSO and the Queen's Printer for Scotland. Published by John Wiley & Sons,Ltd

Từ khóa


Tài liệu tham khảo

10.1175/1520-0493(2002)130<0226:CAOMED>2.0.CO;2

10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2

10.1175/MWR2911.1

10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2

10.1256/qj.02.15

10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2

10.1111/j.1600-0870.2006.00197.x

10.1175/MWR3138.1

Bozic SM., 1979, Digital and Kalman Filtering

10.1175/1520-0434(2002)017<1080:SREFOP>2.0.CO;2

10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2

10.1175/MWR2905.1

10.1175/WAF843.1

10.1029/94JC00572

10.1256/qj.04.178

Garcia‐MoyaJA CalladoA SantosC SantosD SimarroJ.2007.‘Multi‐model ensemble for short‐range predictability’.3rd International Verification Methods Workshop ECMWF.http://www.ecmwf.int/newsevents/meetings/workshops/2007/jwgv/workshop_presentations/index_poster.htm.

10.1002/qj.49712757105

GrayMEB ShuttsGJ.2002.‘A stochastic scheme for representing convectively generated vorticity sources in general circulation models’. APR Turbulence and Diffusion Note 285 Met Office UK.

10.1002/qj.49712454808

10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2

10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2

10.1256/qj.06.25

10.1175//2559.1

10.1017/S1350482700001468

10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2

Kalman RE., 1960, A new approach to linear filtering and prediction problems, Transactions of the AMSE—Journal of Basic Engineering, 82, 35, 10.1115/1.3662552

10.1029/2000GL011964

10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2

10.5194/nhess-4-315-2004

10.1002/met.65

10.1002/qj.49712252905

10.1002/qj.49712757612

10.1038/nature02771

10.1175/JCLI3713.1

10.5194/npg-12-1021-2005

10.1175/1520-0469(1987)044<3363:BFSRFP>2.0.CO;2

10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2

10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2

TractonMS DuJ TothZ JuangH.1998.‘Short‐range ensemble forecasting (SREF) at NCEP/EMC’.12th Conference on Numerical Weather Prediction Phoenix American Meteorological Society pp269–272.

10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2

10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2

10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2

10.1256/qj.02.133

10.1111/j.1600-0870.2006.00159.x

10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2

Wilks DS., 2006, Statistical Methods in the Atmospheric Sciences, 627

10.1002/qj.49712555707