Structure of Met‐enkephalin in explicit aqueous solution using replica exchange molecular dynamics

Proteins: Structure, Function and Bioinformatics - Tập 46 Số 2 - Trang 225-234 - 2002
Karissa Y. Sanbonmatsu1, Angel E. Garcı́a2
1Los Alamos National Laboratory, Los Alamos, New Mexico USA
2Los Alamos National Laboratory, Los Alamos, New Mexico

Tóm tắt

AbstractReplica exchange molecular dynamics (MD) simulations of Met‐enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met‐enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met‐enkephalin switches easily between configurations. This is consistent with the requirement that Met‐enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met‐enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins) Proteins 2002;46:225–234. Published 2001 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1038/258577a0

10.1002/9781444313857

10.1073/pnas.89.6.2046

10.1002/bip.360321216

10.1016/0741-8329(95)02037-3

Rapaka RS, 1985, Am Biotechnol Lab, 3, 11

10.1016/0006-291X(77)90715-X

10.1016/0006-291X(78)91578-4

10.1111/j.1432-1033.1996.0540h.x

10.1016/0006-291X(83)91623-6

10.1126/science.204006

10.1002/bip.360330414

10.1016/0166-1280(94)04105-2

10.1002/qua.560440213

10.1073/pnas.84.19.6611

10.1016/S0009-2614(97)01198-6

10.1002/(SICI)1097-0134(19990301)34:4<472::AID-PROT7>3.0.CO;2-X

10.1016/0370-2693(91)91256-U

10.1002/jcc.540141110

10.1021/j100069a028

10.1143/JPSJ.65.1604

10.1016/S0009-2614(99)01123-9

10.1023/A:1007907925007

10.1002/1097-0134(20010215)42:3<345::AID-PROT50>3.0.CO;2-H

García AE, 2000, The kinetics of water penetration and escape in proteins, Biophys J, 78, P2323

10.1016/S0301-0104(00)00115-4

10.1002/(SICI)1097-0134(20000215)38:3<261::AID-PROT3>3.0.CO;2-Q

10.1103/PhysRevLett.85.2637

10.1021/ja00124a002

Pearlman DA, 1994, AMBER 4.1

10.1063/1.448118

Cornell WD, 1997, Calculation of the Phi‐Psi maps for alanyl and glycyl dipeptides with different additive and non‐additive molecular mechanical models, J de Chimie Phys et de Physico‐Chimie Biol, 94, 1417, 10.1051/jcp/1997941417

10.1021/ja00016a010

10.1016/S0006-3495(97)78847-7

10.1103/PhysRevLett.68.2696

10.1016/S0167-2789(97)00090-0

Humphrey W, 1996, VMD: visual molecular dynamics, J Mol Graph, 33, 27

10.1021/bi00238a032

10.1021/bi00053a005