Absolute and convective instability of a liquid sheet

Journal of Fluid Mechanics - Tập 220 - Trang 673-689 - 1990
S. P. Lin1, Z. W. Lian1, B. Creighton1
1Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13676, USA

Tóm tắt

The linear stability of a viscous liquid sheet in the presence of ambient gas is investigated. It is shown that there are two independent modes of instability, sinuous and varicose. The large-time asymptotic amplitude of sinuous disturbances is found to be bounded but non-vanishing for all calculated values of Reynolds numbers and the gas-to-liquid density ratios when the Weber number is greater than one half. The Weber numberWeis defined as the ratio of the surface tension force to the inertia force per unit area of the gas–liquid interface. WhenWeis smaller than one half, the sinuous mode is stable if the gas-to-liquid density ratio is zero, otherwise it is convectively unstable. The varicose mode is always convectively unstable unless the density ratio,Q, is zero. Then it is asymptotically stable. The spatial growth rate of the varicose mode is smaller than that of the sinuous mode for the same flow parameters. The wavelength of the most amplified waves in both modes is found to scale with the product of the sheet thickness andQ/We. It is shown, by use of the energy equation, that the mechanism of instability is a capillary rupture whenWe[ges ] 0.5, and the convective instability is due to the interfacial pressure fluctuation whenWe< 0.5.

Từ khóa


Tài liệu tham khảo

Antoniandes, M. G. & Lin, S. P. ,1980 J. Colloid Interface Sci. 77,583.

Brown, D. R. :1961 J. Fluid Mech. 10,297.

Weihs, D. :1978 J. Fluid Mech. 87,289.

Briggs, R. J. :1964 Electron Stream Interaction with Plasmas .MIT Press.

Taylor, G. I. :1959a Proc. R. Soc. Lond. A253,289.

Lin, S. P. & Lian, Z. W. ,1989 Phys. Fluids A1,490.

Kelly, R. E. , Goussis, D. A. , Lin, S. P. & Hsu, F. K. ,1989 Phys. Fluids A1,819.

Akylas, T. R. & Benney, D. J. ,1980 Stud. Appl. Maths 63,209.

Taylor, G. I. :1959b Proc. R. Soc. Lond. A252,296.

Clark, C. J. & Dombrowski, N. ,1972 Proc. R. Soc. Lond. A329,467.

Taylor, G. I. :1959c Proc. R. Soc. Lond. A253,313.

Lin, S. P. :1981 J. Fluid Mech. 104,111.

Kistler, S. F. & Scriven, L. E. ,1984 Intl J. Numer. Meth. Fluids 4,207.

Creighton, N. :1989 Energy balance in breakup of liquid jets and curtains. M. S. thesis,Clarkson University.

Crapper, G. D. , Dombrowski, N. , Jepson, W. P. & Pyott, G. A. D. 1973 J. Fluid Mech. 57,671.

Tomotika, S. :1934 Proc. R. Soc. Lond. A146,501.

Lin, S. P. & Roberts, G. ,1981 J. Fluid Mech. 112,443.

Leib, S. J. & Goldstein, M. E. ,1986a J. Fluid Mech. 168,479.

Rombers, S. :1984 Problem Solving Software System for Mathematical and Statistical FORTRAN Programming, I & II.IMSL.

Crapper, G. D. , Dombrowski, N. & Pyott, G. A. D. 1975 Proc. R. Soc. Lond. A342,209.

Muller, D. E. :1956 Mathematical Tables and Aid to Computation , vol. 10, pp.208–230.

Bers, A. :1983 Handbook of Plasma Physics , vol. 1, pp.452–516.North-Holland.

Taylor, G. I. :1963 The Scientific Papers of G. I. Taylor , vol. 3, No. 25.Cambridge University Press.

Leib, S. J. & Goldstein, M. E. ,1986b Phys. Fluids 29,952.