Neurotrophin levels at admission did not change significantly upon alcohol deprivation and were positively correlated with the BMI and LDL levels

Journal of Molecular Psychiatry - Tập 1 - Trang 1-7 - 2013
Aurel Popa-Wagner1, Karolina Furczyk1, Joerg Richter2, Gisela Irmisch1, Johannes Thome1
1Clinic for Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany
2Norway Centre for Child and Adolescent Mental Health Eastern and Southern Norway, Oslo, Norway

Tóm tắt

The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT3) could play a role in addictive behavior. Interactions between BDNF and dopamine transmission influence the alcohol intake. It has been hypothesized that extensive alcohol consumption leads to diminished circulating BDNF levels and impaired BDNF-mediated protective mechanisms. What is more, alcohol dependency causes changes in lipid metabolism which in turn may influence the neurotrophin system. In this study, we tested the hypothesis that alcohol withdrawal increases the serum levels of BDNF in alcoholic patients and investigated correlations between serum BDNF and NT3 and alcohol in breath as well as with the body-mass-index (BMI), lipoprotein profiles and lifestyle factors in 110 male in-patients diagnosed with alcohol addiction on the first day after admission and at discharge. The intoxication level (alcohol in breath at admission) was significantly correlated with liver enzymes and BDNF concentrations (R = .28; p = .004). Patients with positive breath-alcohol test at admission had about 9 times higher NT3 levels and higher liver enzyme concentration levels than nonintoxicated subjects. Alcohol intoxicated patients with pathological aspartate aminase (ASAT) levels had even higher NT3 level (F = 5.41; p = .022). The concentration of NT3 was positively associated with the (BMI) (admission R = .36; p = .004; discharge R = .33; p = .001), and the obese patients had 3 to 5 times higher NT3 concentration than the others. Low-density lipoprotein (LDL) concentration levels were found to positively correlate with NT3 concentration levels (admission R = .025; p = .015 discharge R = .24; p = .23). Other than expected, the levels of NT3 and to a lesser extent BDNF levels, were found to be significantly increased in acute alcohol abuse. Alcohol deprivation did not significantly change the serum neurotrophin levels at admission. NT3 levels were positively correlated with the BMI and LDL levels. Because of expected difference between genders, we recommend investigating these correlations further in patients of both genders.

Tài liệu tham khảo

Bosse KE, Mathews TA: Ethanol-induced increases in extracellular dopamine are blunted in brain-derived neurotrophic factor heterozygous mice. Neurosci Lett 2011, 489: 172–176. 10.1016/j.neulet.2010.12.010 Jeanblanc J, He DY, Carnicella S, Kharazia V, Janak PH, Ron D: Endogenous BDNF in the dorsolateral striatum gates alcohol drinking. J Neurosci 2009, 29: 13494–13502. 10.1523/JNEUROSCI.2243-09.2009 Davis MI: Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 2008, 118: 36–57. 10.1016/j.pharmthera.2008.01.003 Huang MC, Chen CH, Chen CH, Liu SC, Ho CJ, Shen WW, Leu SJ: Alterations of serum brain-derived neurotrophic factor levels in early alcohol withdrawal. Alcohol Alcohol 2008, 43: 241–245. 10.1093/alcalc/agm172 Logrip ML, Janak PH, Ron D: Escalating ethanol intake is associated with altered corticostriatal BDNF expression. J Neurochem 2009, 109: 1459–1468. 10.1111/j.1471-4159.2009.06073.x Hill SY, Wang S, Carter H, Tessner K, Holmes B, McDermott M, Zezza N, Stiffler S: Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: association with allelic variation in GABRA2 and BDNF. Psychiatry Res 2011, 194: 304–313. 10.1016/j.pscychresns.2011.05.006 Prosser RA, Mangrum CA, Glass JD: Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro. Neuroscience 2008, 152: 837–848. 10.1016/j.neuroscience.2007.12.049 Kim J, Kim S, Lee W, Cheon Y, Lee S, Ju A, KM , Kim D: The effects of alcohol abstinence on BDNF, ghrelin, and leptin secretions in alcohol-dependent patients with glucose intolerance. Alcohol Clin Exp Res 2013,37(Suppl 1):E52-E58. Brinton EA: Effects of ethanol intake on lipoproteins. Curr Atheroscler Rep 2012, 14: 108–114. 10.1007/s11883-012-0230-7 Ludka FK, Zomkowski AD, Cunha MP, Dal-Cim T, Zeni AL, Rodrigues AL, Tasca CI: Acute atorvastatin treatment exerts antidepressant-like effect in mice via the l-arginine-nitric oxide-cyclic guanosine monophosphate pathway and increases BDNF levels. Eur Neuropsychopharmacol 2013, 23: 400–412. 10.1016/j.euroneuro.2012.05.005 Jiang H, Liu Y, Zhang Y, Chen ZY: Association of plasma brain-derived neurotrophic factor and cardiovascular risk factors and prognosis in angina pectoris. Biochem Biophys Res Commun 2011, 415: 99–103. 10.1016/j.bbrc.2011.10.020 Wang ZY, Miki T, Ding Y, Wang SJ, Gao YH, Wang XL, Wang YH, Yokoyama T, Warita K, Ohta K, Suzuki S, Ohnishi T, Obama T, Bedi KS, Takeuchi Y, Shan BE: A high cholesterol diet given to apolipoprotein E-knockout mice has a differential effect on the various neurotrophin systems in the hippocampus. Metab Brain Dis 2011, 26: 185–194. 10.1007/s11011-011-9252-z Jung SH, Kim J, Davis JM, Blair SN, Cho HC: Association among basal serum BDNF, cardiorespiratory fitness and cardiovascular disease risk factors in untrained healthy Korean men. Eur J Appl Physiol 2011, 111: 303–311. 10.1007/s00421-010-1658-5 Lopez-Huertas E: The effect of EPA and DHA on metabolic syndrome patients: a systematic review of randomised controlled trials. Br J Nutr 2012,107(Suppl 2):S185-S194. Fattori V, Abe S, Kobayashi K, Costa LG, Tsuji R: Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. J Appl Toxicol 2008, 28: 370–376. 10.1002/jat.1288 Seabold GK, Luo J, Miller MW: Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons. Brain Res Dev Brain Res 1998, 108: 139–145. 10.1016/S0165-3806(98)00043-1 Parks EA, McMechan AP, Hannigan JH, Berman RF: Environmental enrichment alters neurotrophin levels after fetal alcohol exposure in rats. Alcohol Clin Exp Res 2008, 32: 1741–1751. 10.1111/j.1530-0277.2008.00759.x Joe KH, Kim YK, Kim TS, Roh SW, Choi SW, Kim YB, Lee HJ, Kim DJ: Decreased plasma brain-derived neurotrophic factor levels in patients with alcohol dependence. Alcohol Clin Exp Res 2007, 31: 1833–1838. 10.1111/j.1530-0277.2007.00507.x Heberlein A, Muschler M, Wilhelm J, Frieling H, Lenz B, Gröschl M, Kornhuber J, Bleich S, Hillemacher T: BDNF and GDNF serum levels in alcohol-dependent patients during withdrawal. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34: 1060–1064. 10.1016/j.pnpbp.2010.05.025 Klauke R, Schmidt E, Lorentz K: Recommendations for carrying out standard ECCLS procedures (1988) for the catalytic concentrations of creatine kinase, aspartate aminotransferase, alanine aminotransferase and gamma-glutamyltransferase at 37 degrees C. Eur J Clin Chem Clin Biochem 1993, 3: 901–909. Zanardini R, Fontana A, Pagano R, Mazzaro E, Bergamasco F, Romagnosi G, Gennarelli M, Bocchio-Chiavetto L: Alterations of brain-derived neurotrophic factor serum levels in patients with alcohol dependence. Alcohol Clin Exp Res 2011, 35: 1529–1533. Bus BA, Molendijk ML, Penninx BJ, Buitelaar JK, Kenis G, Prickaerts J, Elzinga BM, Voshaar RC: Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinol 2011, 36: 228–239. 10.1016/j.psyneuen.2010.07.013 Hellmann J, Rommelspacher H, Wernicke C: Long-term ethanol exposure impairs neuronal differentiation of human neuroblastoma cells involving neurotrophin-mediated intracellular signaling and in particular protein kinase C. Alcohol Clin Exp Res 2009, 33: 538–550. 10.1111/j.1530-0277.2008.00867.x Vetreno RP, Hall JM, Savage LM: Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem 2011, 96: 596–608. 10.1016/j.nlm.2011.01.003 MacLennan AJ, Lee N, Walker DW: Chronic ethanol administration decreases brain-derived neurotrophic factor gene expression in the rat hippocampus. Neurosci Lett 1995, 197: 105–108. 10.1016/0304-3940(95)11922-J Wang ZY, Miki T, Lee KY, Yokoyama T, Kusaka T, Sumitani K, Warita K, Matsumoto Y, Yakura T, Hosomi N, Ameno K, Bedi KS, Takeuchi Y: Short-term exposure to ethanol causes a differential response between nerve growth factor and brain-derived neurotrophic factor ligand/receptor systems in the mouse cerebellum. Neuroscience 2010, 165: 485–491. 10.1016/j.neuroscience.2009.10.045 Kolb JE, Trettel J, Levine ES: BDNF enhancement of postsynaptic NMDA receptors is blocked by ethanol. Synapse 2005, 55: 52–57. 10.1002/syn.20090 Heaton MB, Kim DS, Paiva M: Neurotrophic factor protection against ethanol toxicity in rat cerebellar granule cell cultures requires phosphatidylinositol 3-kinase activation. Neurosci Lett 2000, 291: 121–125. 10.1016/S0304-3940(00)01398-7 Bruns MB, Miller MW: Neurotrophin ligand-receptor systems in somatosensory cortex of adult rat are affected by repeated episodes of ethanol. Exp Neurol 2007, 204: 680–692. 10.1016/j.expneurol.2006.12.022 Miller MW: Repeated episodic exposure to ethanol affects neurotrophin content in the forebrain of the mature rat. Exp Neurol 2004, 189: 173–181. 10.1016/j.expneurol.2004.05.026 Szabò G, Hoffman PL: Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 maintain functional tolerance to ethanol. Eur J Pharmacol 1995, 287: 35–41. 10.1016/0014-2999(95)00466-3 Pillai A, Bruno D, Sarreal AS, Hernando RT, Saint-Louis LA, Nierenberg J, Ginsberg SD, Pomara N, Mehta PD, Zetterberg H, Blennow K, Buckley PF: Plasma BDNF levels vary in relation to body weight in females. PLoS One 2012, 7: e39358. 10.1371/journal.pone.0039358 Sathish V, Vanoosten SK, Miller BS, Aravamudan B, Thompson MA, Pabelick CM, Vassallo R, Prakash YS: Brain-derived neurotrophic factor in cigarette smoke-induced airway hyperreactivity. Am J Respir Cell Mol Biol 2013, 48: 431–438. 10.1165/rcmb.2012-0129OC Umene-Nakano W, Yoshimura R, Yoshii C, Hoshuyama T, Hayashi K, Hori H, Katsuki A, Ikenouchi-Sugita A, Nakamura J: Varenicline does not increase serum BDNF levels in patients with nicotine dependence. Hum Psychopharmacol 2010, 25: 276–279. 10.1002/hup.1113 Kim TS, Kim DJ, Lee H, Kim YK: Increased plasma brain-derived neurotrophic factor levels in chronic smokers following unaided smoking cessation. Neurosci Lett 2007, 423: 53–57. 10.1016/j.neulet.2007.05.064 Bhang SY, Choi SW, Ahn JH: Changes in plasma brain-derived neurotrophic factor levels in smokers after smoking cessation. Neurosci Lett 2010, 468: 7–11. 10.1016/j.neulet.2009.10.046 Zhang XY, Xiu MH, Chen Da C, Yang FD, Wu GY, Lu L, Kosten TA, Kosten TR: Nicotine dependence and serum BDNF levels in male patients with schizophrenia. Psychopharmacol 2010, 212: 301–307. 10.1007/s00213-010-1956-y Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, Tufik S, Pereira SI, Zanata SM, Ferraz AC: The role of 5-HT(1)A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacol 2012, 62: 184–191. 10.1016/j.neuropharm.2011.06.017