Intracapsular algae provide fixed carbon to developing embryos of the salamanderAmbystoma maculatum

Erin R. Graham1, Scott A. Fay2,3, Robert W. Sanders4
1Department of Biology Temple University, Philadelphia, PA 19122, USA.
2Berkeley Initiative in Global Change Biology, University of California
3Department of Biology, Temple University
4Dept. of Biology, Temple University

Tóm tắt

SummaryEach spring, North American spotted salamander (Ambystoma maculatum) females each lay hundreds of eggs in shallow pools of water. Eggs are surrounded by jelly layers and deposited as large gelatinous masses. Following deposition, masses are penetrated by a mutualistic green alga, Oophila amblystomatis, which enters individual egg capsules, proliferates, and aggregates near the salamander embryo, providing oxygen that enhances development. We examined the effects of population density of intracapsular Oophila on A. maculatum embryos, and show that larger algal populations promote faster embryonic growth and development. Also, we show that carbon fixed by Oophila is transferred to the embryos, providing the first evidence of direct translocation of photosynthate from a symbiont to a vertebrate host.

Từ khóa


Tài liệu tham khảo

Altig, 2007, Morphological diversity and evolution of egg and clutch structure in amphibians, Herpetological Monographs, 21, 1, 10.1655/06-005.1

Bordzilovskaya, 1989, Developmental-stage series of axolotl embryos, Developmental Biology of the Axolotl, 201

Brodman, 1995, Annual variation in breeding success of two syntopic species of Ambystoma salamanders, J. Herpetol., 29, 111, 10.2307/1565093

Engebretson, 1999, Translocation of photosynthetic carbon from two algal symbionts to the sea anemone Anthopleura elegantissima, Biol. Bull., 197, 72, 10.2307/1542998

Fisher, 1986, Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve Solemya reidi, Mar. Biol., 93, 59, 10.1007/BF00428655

Fitt, 2001, Photoacclimation and the effect of the symbiotic environment on the photosynthetic response of symbiotic dinoflagellates in the tropical marine hydroid Myrionema amboinense, J. Exp. Mar. Biol. Ecol., 256, 15, 10.1016/S0022-0981(00)00302-6

Gast, 2004, Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis, Appl. Environ. Microbiol., 70, 2028, 10.1128/AEM.70.4.2028-2037.2004

Gates, 1995, Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro, Proc. Natl. Acad. Sci. USA, 92, 7430, 10.1073/pnas.92.16.7430

Gilbert, 1942, Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes, Ecology, 23, 215, 10.2307/1931088

Gilbert, 1944, The alga-egg relationship in Ambystoma maculatum, a case of symbiosis, Ecology, 25, 366, 10.2307/1931284

Goff, 1978, Ammonia: basis for algal symbiosis in salamander egg masses, Life Sci., 22, 1463, 10.1016/0024-3205(78)90641-0

Hammen, 1962, Carbon dioxide assimilation in the symbiosis of the salamander Ambystoma maculatum and the alga Oophila amblystomatis, Life Sci., 10, 527

Harris, 1967, The morphogenesis of the stomach and intestine in the salamander Ambystoma maculatum, J. Morphol., 122, 345, 10.1002/jmor.1051220405

Hinde, 1987, Control of translocation in some associations between invertebrates and algae, Ann. N. Y. Acad. Sci., 503, 355, 10.1111/j.1749-6632.1987.tb40621.x

Hofmann, 1981, Carbon Metabolism and Strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates, Mar. Biol., 65, 25, 10.1007/BF00397064

Kerney, 2011, Symbiosis between salamander embryos and green algae, Symbiosis, 54, 107, 10.1007/s13199-011-0134-2

Kerney, 2011, Intracellular invasion of green algae in a salamander host, Proc. Natl. Acad. Sci. USA, 108, 6497, 10.1073/pnas.1018259108

Kuske, 1998, Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil, Appl. Environ. Microbiol., 64, 2463, 10.1128/AEM.64.7.2463-2472.1998

Marco, 2000, Symbiosis with green algae affects survival and growth of northwestern salamander embryos, J. Herpetol., 34, 617, 10.2307/1565283

Medlin, 1988, The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions, Gene, 71, 491, 10.1016/0378-1119(88)90066-2

Muller-Parker, 2001, Temperate and tropical algal-sea anemone symbiosis, Invertebr. Biol., 120, 104, 10.1111/j.1744-7410.2001.tb00115.x

Muscatine, 1965, Symbiosis of hydra and algae. II. Effects of limited food and starvation on growth of symbiotic and aposymbiotic hydra, Biol. Bull., 129, 316, 10.2307/1539848

Muscatine, 1984, Fate of photosynthetically-fixed carbon in light and shade-adapted colonies of the symbiotic coral Stylophora pistillata, Proc. R. Soc. Lond. B Biol. Sci., 222, 181, 10.1098/rspb.1984.0058

Nozaki, 2003, Flagellated green algae, Freshwater Algae of North America, 225, 10.1016/B978-012741550-5/50007-6

Orr, 1888, Note on the development of amphibians, chiefly concerning the central nervous system; with additional observations on the hypophysis, mouth, and the appendages and skeleton of the head, Q. J. Micr. Sci. N.S., 29, 295

Peyton, 2004, Marine algal symbionts benefit benthic invertebrate embryos deposited in gelatinous egg masses, J. Exp. Mar. Biol. Ecol., 307, 139, 10.1016/j.jembe.2004.01.022

Pinder, 1994, Oxygen transport in egg masses of the amphibians Rana sylvatica and Ambystoma maculatum: convection, diffusion and oxygen production by algae, J. Exp. Biol., 197, 17, 10.1242/jeb.197.1.17

Proctor, 1957, Studies of algal antibiosis using Haematococcus and Chlamydomonas, Limnol. Oceanogr., 2, 125, 10.4319/lo.1957.2.2.0125

Sanders, 2001, Nutrient acquisition and population growth of a mixotrophic alga in axenic and bacterialized cultures, Microb. Ecol., 42, 513, 10.1007/s00248-001-1024-6

Schlichter, 1983, Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria):carbon assimilation and translocation of photosynthates from symbionts to host, Mar. Biol., 78, 29, 10.1007/BF00392968

Schuytema, 1998, Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles, Arch. Environ. Contam. Toxicol., 34, 370, 10.1007/s002449900332

Smith, 1986, Ontogenetic influences on carbon flux in Aulactinia stelloides polyps (Anthozoa: Actiniaria) and their endosymbiotic algae, Mar. Biol., 92, 361, 10.1007/BF00392677

Steen, 1984, Daily budgets of photosynthetically fixed carbon in symbiotic zoanthids, Biol. Bull., 167, 477, 10.2307/1541292

Tattersall, 2008, Embryonic motility and hatching success of Ambystoma maculatum are influenced by a symbiotic alga, Can. J. Zool., 86, 1289, 10.1139/Z08-115

Trench, 1981, Observations on the symbiosis with zooxanthellae among the Tridacnidea (Mollusca, Bivalvia), Biol. Bull., 161, 180, 10.2307/1541117

Valls, 2007, Intermittent hypoxia in eggs of Ambystoma maculatum: embryonic development and egg capsule conductance, J. Exp. Biol., 210, 2430, 10.1242/jeb.003541

Wetzel, 2000, Limnological Analysis, 10.1007/978-1-4757-3250-4

Whitehead, 2003, Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host, J. Exp. Biol., 206, 3149, 10.1242/jeb.00539

Wilkinson, 1980, Nutrient translocation to the fresh-water sponge Ephydatia fluviatilis from green algal symbiont, Hydrobiologia, 75, 241, 10.1007/BF00006488

Woods, 2007, Photosynthesis drives oxygen levels in macrophyte-associated gastropod egg masses, Biol. Bull., 213, 88, 10.2307/25066621

Yellowlees, 2008, Metabolic interactions between algal symbionts and invertebrate hosts, Plant Cell Environ., 31, 679, 10.1111/j.1365-3040.2008.01802.x