Tăng trưởng nứt mỏi theo chế độ cắt 3D trong thép maraging và Ti-6Al-4V

International Journal of Fracture Mechanics - Tập 165 - Trang 61-76 - 2010
V. Doquet1, Q. H. Bui1, G. Bertolino2, E. Merhy1, L. Alves1
1Laboratoire de Mécanique des Solides, UMR CNRS 7649, Ecole Polytechnique, Palaiseau cedex, France
2CONICET, Centro Atomico Bariloche, Rio Negro, Argentina

Tóm tắt

Các thí nghiệm về sự phát triển nứt mỏi trong chế độ kết hợp II + III đã được thực hiện trên thép maraging và Ti-6Al-4V. Sự phát triển 3D của các bề mặt nứt - được đo bằng SEM sau các thí nghiệm gián đoạn - đã được phân tích, cân nhắc đến sự giảm lực điều khiển nứt hiệu quả do sự khóa chéo và ma sát của các điểm gồ ghề trên bề mặt của vết nứt. Trong điều kiện biến dạng quy mô nhỏ, tỷ lệ phát triển nứt theo chế độ kết hợp được cho là tương quan tốt nhất với ${\sqrt{{\Delta {\rm K}}_{\rm II}^{{\rm eff}^{2}}+1.2\Delta {\rm K}_{\rm III}^{{\rm eff}^{2}}}}$ trong thép maraging, trong khi đối với Ti-6Al-4V, ${\sqrt{\Delta {\rm K}_{\rm II}^{{\rm eff}^{2}}+0.9\Delta {\rm K}_{\rm III}^{{\rm eff}^{2}}}}$ được cho là phù hợp. Đối với sự dẻo kéo mở rộng, một phương pháp dự đoán phát triển nứt đã được đề xuất và xác nhận cho Ti-6Al-4V. Phương pháp này dựa trên các tính toán F.E. đàn hồi-dẻo và ứng dụng, phía trước mỗi nút trên bề mặt nứt, của một tiêu chí mỏi chiếm ưu thế bởi cắt.

Từ khóa

#nứt mỏi #thép maraging #Ti-6Al-4V #chế độ kết hợp II + III #phát triển nứt #phương pháp dự đoán

Tài liệu tham khảo

Bazant ZP, Estenssoro LF (1979) Surface singularity and crack propagation. Int J Solids 15: 405–426 Beretta S, Donzella G, Roberti R, Ghidini A (2000) Contact fatigue propagation of deep defects in rail wheels. In: Proceedings of 13th European Conference Fract. ECF13, San Sebastian, Spain vol 3R, pp 147 Bertolino G, Doquet V (2009) Derivation of effective ΔKII and asperity-induced KI from the measured crack faces displacements. Eng Fract Mech 76: 1574–1588 Brown MW, Hay E, Miller KJ (1985) Fatigue at notches subjected to reversed torsion and static axial loads. Fatigue Fract Eng M 8: 243 Brown MW, Hay E, Miller KJ (1985) Fatigue at notches subjected to reversed torsion and static axial loads. Fat Fract Eng Mat Struct 8: 243 Brown MW, Miller KJ, Fernando US, Yates JR, Suker DK (1994) Aspects of multiaxial fatigue crack propagation. In: Proceedings of 4th International Conference Biaxial/Multiaxial fatigue, Paris, vol 1, pp 3–16 Doquet V, Bertolino G (2008) A material and environment-dependent criterion for the prediction of fatigue crack paths in metals. Eng Fract Mech 75: 3399–3412 Doquet V, Bertolino G (2008) Local approach to fatigue cracks bifurcation. Int J Fatigue 30: 942–950 Doquet V, Abbadi M, Bui QH, Pons A (2009) Influence of the loading path on fatigue crack growth under mixed-mode loading. Int J of Fract 59: 219–232 Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mat 14: 149–165 Hellier AK, Corderoy DJH, McGirr MB (1987) A practical mixed mode II/III fatigue test rig. Int J Fatigue 9: 95–101 Hellier AK, McGirr MB, Corderoy DJH (1991) A finite element and fatigue threshold study of shelling in heavy haul rails. Wear 144: 289–306 Hellier AK, Mc Girr MB, Corderoy DJH, Kutajczyk LA (1990) Fatigue of head-hardened rail steel under mode III loading. Int J Fract 42: R19–23 Heyder M, Kolk K, Kuhn G (2005) Numerical and experimental investigations of the influence of corner singularities on 3D fatigue crack propagation. Eng Fract Mech 72: 2095–2105 Heyder M, Kuhn G (2006) 3D fatigue crack propagation: experimental studies. Int J Fatigue 28: 627–634 Holáň L, Pippan R, Pokluda J, Horníková J, Hohenwarter A, Slámečka K (2009) Near-threshold propagation of Mode II and Mode III Cracks. International Conference on Crack Paths, Vicenza, Italy, pp 25–29 Hourlier F, d’Hondt H, Truchon M Pineau (1985) Fatigue crack path behavior under polymodal fatigue. In: Miller KJ, Brown M (eds) Multiaxial fatigue. ASTM STP 853, ASTM Philadelphia, USA, pp 228–248 McClintock FA, Ritchie RO (1982) In: Mura T (ed) Mechanics of Fatigue. American Society of Mechanical Engineers, AMD, vol 47, pp 1–11 Meade KP, Keer LM (1984) Stress intensity factors for a semi-infinite plane crack with a wavy front. J Elasticity 14: 79–92 Murakami Y, Natsume H (2002) Stress singularity at the corner point of 3-D surface crack under mode II loading. JSME Int J 45: 61–169 Murakami Y, Kusumoto R, Takahashi K (2002) Growth mechanism and threshold of mode II and mode III fatigue crack. In: Proceedings of 14th European Conference on fracture, ECF14, Cracow, Poland. vol 2, pp 493–500 Murakami Y, Takahashi K, Kusumoto R (2003) Threshold and growth mechanism of fatigue cracks under mode II and mode III loadings. Fatigue Fract Eng M 26: 523–531 Murakami Y, Fukushima Y, Toyama K, Matsuoka S (2008) Fatigue crack path and threshold in Mode II and Mode III loadings. Eng Fract Mech 75: 306–318 Nakamura T, Parks DM (1989) Antisymmetrical 3-D stress field near the crack front of a thin elastic plate. J Solids Struct 25: 1411–1426 Nayeb-Hashemi H, McClintock FA, Ritchie RO (1983) Micro-mechanical modelling of mode III fatigue crack growth in rotor steels. Int J Fract 23: 163–185 Otsuka A, Mori K, Togho K (1987) Mode II fatigue crack growth in aluminium alloys. Curr Jpn Mat Res 1: 149–180 Pinna C, Doquet V (1999) The preferred fatigue crack propagation mode in a M250 maraging steel loaded in shear. Fatigue Fract Eng M 22: 173–183 Pindra N, Lazarus V, Leblond JB (2008) The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties. J Mech Phys Solids 56: 1269–1295 Planck R, Kuhn G (1999) Fatigue crack propagation under non-proportional mixed-mode loading. Eng Fract Mech 62: 203–229 Pokluda J, Pippan R, Slamecka K, Kolednik O (2005) Can pure mode III fatigue loading contribute to crack propagation in metallic materials?. Fatigue Fract Eng M 28: 179–185 Pokluda J, Trattnig G, Martinschitz C, Pippan R. (2008) Straightforward comparison of fatigue crack growth under mode II and mode III. Int J Fatigue 30: 1498–1506 Ritchie RO, McClintock FA, Nayeb-Hashemi H, Ritter MA (1982) Mode III fatigue crack propagation in low alloy steel. Metall Trans A 13: 101–110 Smith MC, Smith RA (1988) Toward an understanding of mode II fatigue crack growth, In: Fong JT, Wei RP, Fields RJ, Gangloff RP (eds) Basic questions in fatigue, ASTM STP 924. vol.1:260–280 Tschegg EK, Stanzl SE (1988) The significance of sliding mode crack closure on mode III fatigue crack growth. In: Fong JT, Wei RP, Fields RJ, Gangloff RP (eds) Basic questions in fatigue, ASTM STP 924, vol 1, pp 214–232