3D object perception and perceptual learning in the RACE project
Tài liệu tham khảo
S. Rockel, B. Neumann, J. Zhang, K.S.R. Dubba, A.G. Cohn, S˘. Konec˘ný, M. Mansouri, F. Pecora, A. Saffiotti, M. Günther, S. Stock, J. Hertzberg, A.M. Tomé, A.J. Pinho, L. Seabra Lopes, S. von Riegen, L. Hotz, An ontology-based multi-level robot architecture for learning from experiences, in: Designing Intelligent Robots: Reintegrating AI II, AAAI Spring Symposium on, Stanford, USA, 2013.
Hertzberg, 2014, The RACE project, KI—Künstliche Intelligenz, 28, 297, 10.1007/s13218-014-0327-y
Kasaei, 2015, Interactive open-ended learning for 3D object recognition: An approach and experiments, J. Intell. Robot. Syst., 1
K. Dubba, M. de Oliveira, G. Lim, H. Kasaei, L. Seabra Lopes, A. Tomé, A. Cohn, Grounding language in perception for scene conceptualization in autonomous robots, in: AAAI 2014 Spring Symposium on Qualitative Representations for Robots, 2014.
Mokhtari~Hassanabad, 2015, Gathering and conceptualizing plan-based robot activity experiences, vol. 302
Cousins, 2010, Welcome to ROS topics, IEEE Robot. Autom. Mag., 17, 12, 10.1109/MRA.2010.936956
Cousins, 2010, Sharing software with ROS, IEEE Robot. Autom. Mag., 17, 12, 10.1109/MRA.2010.936956
Nau, 2003, Shop2: An htn planning system, J. Artificial Intelligence Res., 20, 379, 10.1613/jair.1141
Barsalou, 1999, Perceptual symbol systems, Behav. Brain Sci., 22, 577, 10.1017/S0140525X99002149
Oliveira, 2014, A perceptual memory system for grounding semantic representations in intelligent service robots
Lim, 2011, Ontology-based unified robot knowledge for service robots in indoor environments, Systems, IEEE Trans. Syst. Man Cybern., 41, 492, 10.1109/TSMCA.2010.2076404
Coradeschi, 2003, An introduction to the anchoring problem, Robot. Auton. Syst., 43, 85, 10.1016/S0921-8890(03)00021-6
Zaman, 2013, An integrated model-based diagnosis and repair architecture for ROS-based robot systems
Tulving, 1991, Concepts of human memory, 3
Tulving, 2005, Episodic memory and autonoesis: Uniquely human?, 4
Wood, 2011, A review of long-term memory in natural and synthetic systems, Adapt. Behav., 20, 81, 10.1177/1059712311421219
Seabra~Lopes, 2007, How many words can my robot learn?: An approach and experiments with one-class learning, Interact. Stud., 8, 53, 10.1075/is.8.1.05lop
Seabra~Lopes, 2008, Open-ended category learning for language acquisition, Connect. Sci., 20, 277, 10.1080/09540090802413228
Kirstein, 2012, A life-long learning vector quantization approach for interactive learning of multiple categories, Neural Netw., 28, 90, 10.1016/j.neunet.2011.12.003
Krüger, 2011, Object-action complexes: Grounded abstractions of sensory-motor processes, Robot. Auton. Syst., 59, 740, 10.1016/j.robot.2011.05.009
F. Heintz, J. Kvarnstrom, P. Doherty, A stream-based hierarchical anchoring framework, in: Intelligent Robots and Systems, 2009, IROS 2009, IEEE/RSJ International Conference on, 2009, pp. 5254–5260.
Aldoma, 2012, Point cloud library, IEEE Robot. Autom. Mag., 1070
Clapés, 2013, Multi-modal user identification and object recognition surveillance system, Pattern Recognit. Lett., 34, 799, 10.1016/j.patrec.2012.12.008
Rusu, 2009, Fast point feature histograms (FPFH) for 3D registration, 3212
Seabra~Lopes, 2001, Semisentient robots: routes to integrated intelligence, IEEE Intell. syst., 16, 10
Sahib, 2013, A review of non relational databases, their types, advantages and disadvantages, Int. J. Eng. Technol., 2
Lim, 2014, Interactive teaching and experience extraction for learning about objects and robot activities, 153
Evans, 2008, Dual-processing accounts of reasoning, judgment, and social cognition, Ann. Rev. Psychol., 59, 255, 10.1146/annurev.psych.59.103006.093629
R. Rusu, S. Cousins, 3D is here: Point cloud library (PCL), in: Robotics and Automation, ICRA, 2011 IEEE International Conference on, 2011, pp. 1–4.
Cohen-Or, 1995, Fundamentals of surface voxelization, Graph. Models Image Process., 57, 453, 10.1006/gmip.1995.1039
Barber, 1996, The Quickhull algorithm for convex hulls, ACM Trans. Math. Softw., 22, 469, 10.1145/235815.235821
N.M. Amato, F.P. Preparata, An NC parallel 3D convex hull algorithm, in: Proceedings of the ninth annual symposium on Computational geometry, SCG’93, 1993, pp. 289–297.
Fischler, 1981, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, 24, 381, 10.1145/358669.358692
Rusu, 2009
Yi, 2000, Principal component analysis in application to object orientation, Geo-spatial Inf. Sci., 3, 76, 10.1007/BF02826615
Y. Salih, A. Malik, 3D tracking using particle filters, in: Instrumentation and Measurement Technology Conference, I2MTC, 2011 IEEE, 2011, pp. 1–4.
Johnson, 1999, Using spin images for efficient object recognition in cluttered 3D scenes, IEEE Trans. Pattern Anal. Mach. Intell., 21, 433, 10.1109/34.765655
Connor, 2010, Fast construction of k-nearest neighbor graphs for point clouds, IEEE Trans. Vis. Comput. Graphics, 16, 599, 10.1109/TVCG.2010.9
R. Rusu, N. Blodow, Z. Marton, M. Beetz, Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments, in: Intelligent Robots and Systems, 2009, IROS 2009, IEEE/RSJ International Conference on, 2009, pp. 1–6.
Munaro, 2013, A software architecture for RGB-D people tracking based on ROS framework for a mobile robot, vol. 466, 53
Bentley, 1975, Multidimensional binary search trees used for associative searching, Commun. ACM, 18, 509, 10.1145/361002.361007
Chauhan, 2011, Using spoken words to guide open-ended category formation, Cogn. Process., 12, 341, 10.1007/s10339-011-0407-y
K. Lai, L. Bo, X. Ren, D. Fox, A large-scale hierarchical multi-view RGB-D object dataset, in: Robotics and Automation, ICRA, 2011 IEEE International Conference on, 2011, pp. 1817–1824.
M. Oliveira, L. Seabra Lopes, G.H. Lim, H. Kasaei, A.D. Sappa, A. Tome, A. Chauhan, Concurrent learning of visual codebooks and object categories in open-ended domains, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE (in press).