3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps"

BMC Cell Biology - Tập 11 - Trang 1-10 - 2010
Hans Knecht1, Silke Brüderlein2, Silke Wegener3, Daniel Lichtensztejn4, Zelda Lichtensztejn4, Bruno Lemieux1, Peter Möller2, Sabine Mai4
1Division d'Hématologie, CHUS, Université de Sherbrooke, Québec, Canada
2Institute of Pathology, University of Ulm, Ulm, Germany
3St. Elisabeth Krankenhaus, Köln, Germany
4Manitoba Institute of Cellular Biology, University of Manitoba, Winnipeg, Canada

Tóm tắt

In cancer cells the three-dimensional (3D) telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH) reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H) to diagnostic multinuclear Reed-Sternberg (RS) cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1) stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p < 0.0001) and a fourfold increased number of apoptotic cells. As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p < 0.0001), the number of telomeres (p < 0.0001) and the increase in telomere aggregates (p < 0.003). Surprisingly, U-HO1-RS cells differ from U-HO1-PTPN1-RS-cells by a highly significant increase of very short telomeres including "t-stumps" (p < 0.0001). Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.

Tài liệu tham khảo

Hsu SM, Zhao X, Chakraborty S, Liu YF, Whang-Peng J, Lok MS, Fukuhara S: Reed-Sternberg cells in Hodgkin's cell lines HDLM-2, L-428, and KM-H2 are not actively replicating: lack of bromodeoxyuridine uptake by multinuclear cells in culture. Blood. 1988, 71: 1382-1389. Drexler HG, Gignac SM, Hoffbrand AV, Minowada J: Formation of multinucleated cells in a Hodgkin's-disease-derived cell line. Int J Cancer. 1989, 43: 1083-1090. 10.1002/ijc.2910430622. Newcom SR, Kadin ME, Phillips C: L-428 Reed-Sternberg cells and mononuclear Hodgkin's cells arise from a single cloned mononuclear cell. Int J Cell Cloning. 1993, 6: 417-431. 10.1002/stem.5530060606. Knecht H, Sawan B, Lichtensztejn D, Lemieux B, Wellinger RJ, Mai S: The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed-Sternberg cells. Leukemia. 2009, 23: 565-573. 10.1038/leu.2008.314. Louis SF, Vermolen BJ, Garini Y, Young IT, Guffei A, Lichtensztejn Z, Kuttler F, Chuang TC, Moshir S, Mougey V, Chuang AY, Kerr PD, Fest T, Boukamp P, Mai S: c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci USA. 2005, 102: 9613-9618. 10.1073/pnas.0407512102. Knecht H, Sawan B, Lichtensztejn Z, Lichtensztejn D, Mai S: 3D telomere FISH defines LMP1 expressing Reed-Sternberg cells as end-stage cells with telomere-poor "ghost" nuclei. Lab Invest. 2010, 90: 611-619. 10.1038/labinvest.2010.2. Mader A, Brüderlein S, Wegener S, Melzner I, Popov S, Muller-Hermelink HK, Barth TF, Viardot A, Möller P: U-HO1, a new cell line derived from a primary refractory classical Hodgkin lymphoma. Cytogenet Genome Res. 2007, 119: 204-210. 10.1159/000112062. Wegener S, Mader A, Melzner I, Brüderlein S, Möller P: Lack of PTPN1 (PTP1B) in U-HO1, a new Hodgkin-derived cell line, protects cells from apoptosis. Haematologica. 2007, 92 (s5): 39- Aoki N, Matsuda T: A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphory-lates and deactivates prolactin-activated STAT5a aand STAT5b. J Biol Chem. 2000, 275: 39718-39726. 10.1074/jbc.M005615200. Scheeren FA, Naspetti M, Diehl S, Schotte R, Nagasawa M, Wijnands E, Gimeno R, Vyth-Dreese FA, Blom B, Spits H: STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol. 2005, 6: 303-313. 10.1038/ni1172. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, Dörken B, Zenke M, Stein H, Scheidereit C: Nuclear factor kB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med. 2002, 196: 605-617. 10.1084/jem.20020062. Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ, Blom B, Karube K, Ohshima K, van Noesel CJ, Spits H: IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008, 111: 4706-4715. 10.1182/blood-2007-08-105643. Dubé N, Bourdeau A, Heinonen KM, Cheng A, Lee Loy A, Tremblay ML: Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-Null mice through the regulation of B-cell development. Cancer Res. 2005, 65: 10088-10095. 10.1158/0008-5472.CAN-05-1353. Heinonen KM, Dubé N, Bourdeau A, Lapp WS, Tremblay ML: Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc Natl Acad Sci USA. 2007, 103: 2776-2781. 10.1073/pnas.0508563103. Khan G: Epstein-Barr virus, cytokines, and inflammation: A cocktail for the pathogenesis of Hodgkin's lymphoma?. Exp Hematol. 2006, 34: 399-406. 10.1016/j.exphem.2005.11.008. Xu L, Blackburn EH: Human cancer cells harbour T-stumps, a distinct class of extremely short telomeres. Mol Cell. 2007, 28: 315-327. 10.1016/j.molcel.2007.10.005. De Lange T: Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev. 2005, 19: 2100-2110. 10.1101/gad.1346005. MacLeod RA, Spitzer D, Bar-Am I, Sylvester JE, Kaufmann M, Wernich A, Drexler HG: Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification. Leukemia. 2000, 14: 1803-1814. 10.1038/sj.leu.2401894. Guffei A, Sarkar R, Klewes L, Righolt C, Knecht H, Mai S: Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing 3D nuclear remodelling and breakage-bridge-fusion cycles. Haematologica. 2010, 95: 2038-2046. 10.3324/haematol.2010.030171. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dörken B: Constitutive nuclear factor-kappaB-RelA activtion is required for profliferation and survival in Hodgkin's disease tumor cells. J Clin Invest. 1997, 100: 2961-2969. 10.1172/JCI119849. Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, Mattfeldt T, Barth TF, Möller P: Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006, 25: 2679-2684. 10.1038/sj.onc.1209151. Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R, Brevet M, Dhennin I, Gouilleux-Gruart V, Beug H, Valent P, Lassoued K, Moriggl R, Gouilleux F: Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood. 2007, 109: 1678-1686. 10.1182/blood-2006-01-029918. Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, Gartel A, Hay N: Activation of Akt/protein kinase B overcomes a G2/M cell cycle checkpoint induced by DNA damage. Mol Cell Biol. 2002, 22: 7831-7841. 10.1128/MCB.22.22.7831-7841.2002. Hixon ML, Muro-Cacho C, Wagner MW, Obejero-Paz C, Millie E, Fujio Y, Kureishi Y, Hassold T, Walsh K, Gualberto A: Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. J Clin Invest. 2000, 106: 1011-1020. 10.1172/JCI8252. Tiganis T, Bennett AM: Protein tyrosine phosphatase function: the substrate perspective. Biochem J. 2007, 402: 1-15. 10.1042/BJ20061548. Lessard L, Stuible M, Tremblay ML: The two faces of PTP1B in cancer. Biochimica et Biophysica Acta. 2010, 1804: 613-619. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991, 139: 271-279. 10.1016/0022-1759(91)90198-O. Chuang TC, Moshir S, Garini Y, Chuang AY, Young IT, Vermolen B, van den Doel R, Mougey V, Perrin M, Braun M, Kerr PD, Fest T, Boukamp P, Mai S: The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol. 2004, 2: 12-10.1186/1741-7007-2-12. Schaefer LH, Schuster D, Herz H: Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc. 2001, 204: 99-107. 10.1046/j.1365-2818.2001.00949.x. Vermolen Bj, Garini Y, Mai S, Mougey V, Fest T, Chuang TC, Chuang AY, Wark L, Young IT: Characterizing the three-dimensional organization of telomeres. Cytometry A. 2005, 67: 144-150. Poon SS, Martens UM, Ward RK, Lansdorp PM: Telomere length measurements using digital fluorescence microscopy. Cytometry. 1999, 36: 267-278. 10.1002/(SICI)1097-0320(19990801)36:4<267::AID-CYTO1>3.0.CO;2-O. Mai S, Garini Y: The significance of telomeric aggregates in the interphase nuclei of tumor cells. J Cell Biochem. 2006, 97: 904-915. 10.1002/jcb.20760. Sarkar R, Guffei A, Vermolen BJ, Garini Y, Mai S: Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry A. 2007, 71: 386-392.