3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps"
Tóm tắt
In cancer cells the three-dimensional (3D) telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH) reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H) to diagnostic multinuclear Reed-Sternberg (RS) cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1) stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p < 0.0001) and a fourfold increased number of apoptotic cells. As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p < 0.0001), the number of telomeres (p < 0.0001) and the increase in telomere aggregates (p < 0.003). Surprisingly, U-HO1-RS cells differ from U-HO1-PTPN1-RS-cells by a highly significant increase of very short telomeres including "t-stumps" (p < 0.0001). Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.
Tài liệu tham khảo
Hsu SM, Zhao X, Chakraborty S, Liu YF, Whang-Peng J, Lok MS, Fukuhara S: Reed-Sternberg cells in Hodgkin's cell lines HDLM-2, L-428, and KM-H2 are not actively replicating: lack of bromodeoxyuridine uptake by multinuclear cells in culture. Blood. 1988, 71: 1382-1389.
Drexler HG, Gignac SM, Hoffbrand AV, Minowada J: Formation of multinucleated cells in a Hodgkin's-disease-derived cell line. Int J Cancer. 1989, 43: 1083-1090. 10.1002/ijc.2910430622.
Newcom SR, Kadin ME, Phillips C: L-428 Reed-Sternberg cells and mononuclear Hodgkin's cells arise from a single cloned mononuclear cell. Int J Cell Cloning. 1993, 6: 417-431. 10.1002/stem.5530060606.
Knecht H, Sawan B, Lichtensztejn D, Lemieux B, Wellinger RJ, Mai S: The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed-Sternberg cells. Leukemia. 2009, 23: 565-573. 10.1038/leu.2008.314.
Louis SF, Vermolen BJ, Garini Y, Young IT, Guffei A, Lichtensztejn Z, Kuttler F, Chuang TC, Moshir S, Mougey V, Chuang AY, Kerr PD, Fest T, Boukamp P, Mai S: c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci USA. 2005, 102: 9613-9618. 10.1073/pnas.0407512102.
Knecht H, Sawan B, Lichtensztejn Z, Lichtensztejn D, Mai S: 3D telomere FISH defines LMP1 expressing Reed-Sternberg cells as end-stage cells with telomere-poor "ghost" nuclei. Lab Invest. 2010, 90: 611-619. 10.1038/labinvest.2010.2.
Mader A, Brüderlein S, Wegener S, Melzner I, Popov S, Muller-Hermelink HK, Barth TF, Viardot A, Möller P: U-HO1, a new cell line derived from a primary refractory classical Hodgkin lymphoma. Cytogenet Genome Res. 2007, 119: 204-210. 10.1159/000112062.
Wegener S, Mader A, Melzner I, Brüderlein S, Möller P: Lack of PTPN1 (PTP1B) in U-HO1, a new Hodgkin-derived cell line, protects cells from apoptosis. Haematologica. 2007, 92 (s5): 39-
Aoki N, Matsuda T: A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphory-lates and deactivates prolactin-activated STAT5a aand STAT5b. J Biol Chem. 2000, 275: 39718-39726. 10.1074/jbc.M005615200.
Scheeren FA, Naspetti M, Diehl S, Schotte R, Nagasawa M, Wijnands E, Gimeno R, Vyth-Dreese FA, Blom B, Spits H: STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol. 2005, 6: 303-313. 10.1038/ni1172.
Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, Dörken B, Zenke M, Stein H, Scheidereit C: Nuclear factor kB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med. 2002, 196: 605-617. 10.1084/jem.20020062.
Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ, Blom B, Karube K, Ohshima K, van Noesel CJ, Spits H: IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008, 111: 4706-4715. 10.1182/blood-2007-08-105643.
Dubé N, Bourdeau A, Heinonen KM, Cheng A, Lee Loy A, Tremblay ML: Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-Null mice through the regulation of B-cell development. Cancer Res. 2005, 65: 10088-10095. 10.1158/0008-5472.CAN-05-1353.
Heinonen KM, Dubé N, Bourdeau A, Lapp WS, Tremblay ML: Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc Natl Acad Sci USA. 2007, 103: 2776-2781. 10.1073/pnas.0508563103.
Khan G: Epstein-Barr virus, cytokines, and inflammation: A cocktail for the pathogenesis of Hodgkin's lymphoma?. Exp Hematol. 2006, 34: 399-406. 10.1016/j.exphem.2005.11.008.
Xu L, Blackburn EH: Human cancer cells harbour T-stumps, a distinct class of extremely short telomeres. Mol Cell. 2007, 28: 315-327. 10.1016/j.molcel.2007.10.005.
De Lange T: Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev. 2005, 19: 2100-2110. 10.1101/gad.1346005.
MacLeod RA, Spitzer D, Bar-Am I, Sylvester JE, Kaufmann M, Wernich A, Drexler HG: Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification. Leukemia. 2000, 14: 1803-1814. 10.1038/sj.leu.2401894.
Guffei A, Sarkar R, Klewes L, Righolt C, Knecht H, Mai S: Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing 3D nuclear remodelling and breakage-bridge-fusion cycles. Haematologica. 2010, 95: 2038-2046. 10.3324/haematol.2010.030171.
Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dörken B: Constitutive nuclear factor-kappaB-RelA activtion is required for profliferation and survival in Hodgkin's disease tumor cells. J Clin Invest. 1997, 100: 2961-2969. 10.1172/JCI119849.
Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, Mattfeldt T, Barth TF, Möller P: Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006, 25: 2679-2684. 10.1038/sj.onc.1209151.
Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R, Brevet M, Dhennin I, Gouilleux-Gruart V, Beug H, Valent P, Lassoued K, Moriggl R, Gouilleux F: Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood. 2007, 109: 1678-1686. 10.1182/blood-2006-01-029918.
Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, Gartel A, Hay N: Activation of Akt/protein kinase B overcomes a G2/M cell cycle checkpoint induced by DNA damage. Mol Cell Biol. 2002, 22: 7831-7841. 10.1128/MCB.22.22.7831-7841.2002.
Hixon ML, Muro-Cacho C, Wagner MW, Obejero-Paz C, Millie E, Fujio Y, Kureishi Y, Hassold T, Walsh K, Gualberto A: Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. J Clin Invest. 2000, 106: 1011-1020. 10.1172/JCI8252.
Tiganis T, Bennett AM: Protein tyrosine phosphatase function: the substrate perspective. Biochem J. 2007, 402: 1-15. 10.1042/BJ20061548.
Lessard L, Stuible M, Tremblay ML: The two faces of PTP1B in cancer. Biochimica et Biophysica Acta. 2010, 1804: 613-619.
Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991, 139: 271-279. 10.1016/0022-1759(91)90198-O.
Chuang TC, Moshir S, Garini Y, Chuang AY, Young IT, Vermolen B, van den Doel R, Mougey V, Perrin M, Braun M, Kerr PD, Fest T, Boukamp P, Mai S: The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol. 2004, 2: 12-10.1186/1741-7007-2-12.
Schaefer LH, Schuster D, Herz H: Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc. 2001, 204: 99-107. 10.1046/j.1365-2818.2001.00949.x.
Vermolen Bj, Garini Y, Mai S, Mougey V, Fest T, Chuang TC, Chuang AY, Wark L, Young IT: Characterizing the three-dimensional organization of telomeres. Cytometry A. 2005, 67: 144-150.
Poon SS, Martens UM, Ward RK, Lansdorp PM: Telomere length measurements using digital fluorescence microscopy. Cytometry. 1999, 36: 267-278. 10.1002/(SICI)1097-0320(19990801)36:4<267::AID-CYTO1>3.0.CO;2-O.
Mai S, Garini Y: The significance of telomeric aggregates in the interphase nuclei of tumor cells. J Cell Biochem. 2006, 97: 904-915. 10.1002/jcb.20760.
Sarkar R, Guffei A, Vermolen BJ, Garini Y, Mai S: Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry A. 2007, 71: 386-392.