3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels

Journal of Biomedical Materials Research - Part A - Tập 101A Số 5 - Trang 1255-1264 - 2013
Bin Duan1, Laura A. Hockaday2, Kevin H. Kang2, Jonathan T. Butcher2
1Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
2(Cornell University

Tóm tắt

AbstractHeart valve disease is a serious and growing public health problem for which prosthetic replacement is most commonly indicated. Current prosthetic devices are inadequate for younger adults and growing children. Tissue engineered living aortic valve conduits have potential for remodeling, regeneration, and growth, but fabricating natural anatomical complexity with cellular heterogeneity remain challenging. In the current study, we implement 3D bioprinting to fabricate living alginate/gelatin hydrogel valve conduits with anatomical architecture and direct incorporation of dual cell types in a regionally constrained manner. Encapsulated aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells (VIC) were viable within alginate/gelatin hydrogel discs over 7 days in culture. Acellular 3D printed hydrogels exhibited reduced modulus, ultimate strength, and peak strain reducing slightly over 7‐day culture, while the tensile biomechanics of cell‐laden hydrogels were maintained. Aortic valve conduits were successfully bioprinted with direct encapsulation of SMC in the valve root and VIC in the leaflets. Both cell types were viable (81.4 ± 3.4% for SMC and 83.2 ± 4.0% for VIC) within 3D printed tissues. Encapsulated SMC expressed elevated alpha‐smooth muscle actin, while VIC expressed elevated vimentin. These results demonstrate that anatomically complex, heterogeneously encapsulated aortic valve hydrogel conduits can be fabricated with 3D bioprinting. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.

Từ khóa


Tài liệu tham khảo

10.1016/j.addr.2011.01.008

10.1146/annurev-physiol-012110-142145

Filova E, 2009, Tissue‐engineered heart valves, Physiol Res, 58, S141, 10.33549/physiolres.931919

10.1161/01.RES.0000185326.04010.9f

10.1016/j.athoracsur.2006.12.066

10.1016/j.ejcts.2010.07.030

10.1016/S0003-4975(00)01255-8

10.1016/j.jacc.2010.04.024

10.1089/ten.tea.2010.0138

10.1146/annurev-bioeng-061008-124903

10.1089/ten.tec.2011.0070

10.1159/000168317

10.1016/j.athoracsur.2009.11.058

10.1016/j.biomaterials.2007.04.012

Courtney T, 2006, Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy, Biomaterials, 27, 3631

10.1007/s12265-011-9300-4

10.1098/rstb.2007.2124

10.1016/j.tibtech.2010.12.008

10.1089/ten.2006.12.631

10.1002/jbm.b.31831

10.1089/ten.tec.2010.0093

10.1016/j.biomaterials.2010.04.045

10.1177/0883911509104094

10.1021/bm200178w

10.1016/j.actbio.2011.06.039

10.1021/bm1015305

10.1002/adfm.201002428

10.1088/1758-5082/3/2/021001

Butcher JT, 2004, Porcine aortic valve interstitial cells in three‐dimensional culture: comparison of phenotype with aortic smooth muscle cells, J Heart Valve Dis, 13, 478

Filho AL, 2010, Innovative Developments in Design and Manufacturing, 469

10.1088/1758-5082/4/3/035005

10.1096/fj.09-151639

10.1111/j.1582-4934.2010.01017.x

10.1016/j.actbio.2010.07.001

10.1523/JNEUROSCI.5035-10.2011

10.1038/onc.2011.330

10.1089/ten.tea.2011.0019

10.1115/1.3128729

10.1108/13552540910960307

10.1089/ten.tec.2009.0441

10.1002/mabi.200600069

10.1016/j.jbiotec.2009.08.008

10.1016/j.progpolymsci.2011.06.003

10.1016/j.actbio.2009.09.029

10.1016/j.biomaterials.2010.05.055

10.1016/j.foodhyd.2008.06.011

10.1115/1.2896215

10.1002/jbm.a.32191

10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W

10.1089/ten.tea.2008.0067

10.1016/j.reactfunctpolym.2004.01.002

Butcher JT, 2008, Review—Mechanobiology of the aortic heart valve, J Heart Valve Dis, 17, 62

10.1161/CIRCULATIONAHA.105.591768

10.1016/j.biomaterials.2009.09.025

10.1016/j.actbio.2011.02.018