341 nm emission from hydride vapor-phase epitaxy ultraviolet light-emitting diodes

Journal of Applied Physics - Tập 95 Số 12 - Trang 8247-8251 - 2004
Gary A. Smith1, Tuoc Dang1, Thomas R. Nelson1, Jeff L. Brown2, D. Tsvetkov3, A. Usikov3, V. Dmitriev3
1Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433
2Materials Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433
3Technologies and Devices International, Inc., 12214 Plum Orchard Drive, Silver Spring, Maryland 20904

Tóm tắt

Hydride vapor-phase epitaxy (HVPE) was used to grow aluminum gallium nitride-based p–n diode structures on sapphire (0001) substrates. In the diode structure, an n-type AlGaN photon-emitting layer was sandwiched between n-type and p-type AlGaN cladding layers that contained higher AlN concentrations. These diode structures were processed and subsequently packaged into transistor outline cans. The light-emitting diodes (LEDs) were characterized using a state-of-the-art spectroradiometer. LED spectral emission occurred at a peak wavelength of 341 nm with a typical full width at half-maximum of approximately 14 nm. Pulsed injection currents of 110 mA resulted in greater than 2 mW of optical output power at a wavelength of 341 nm. This HVPE-grown LED’s pulsed optical power output level is comparable to reported results on similar sized metalorganic chemical vapor deposition grown ultraviolet LEDs with emission wavelengths near 340 nm.

Từ khóa


Tài liệu tham khảo

2002, Appl. Phys. Lett., 81, 801, 10.1063/1.1497709

1998, Appl. Phys. Lett., 73, 1688, 10.1063/1.122246

2002, Appl. Phys. Lett., 81, 3666, 10.1063/1.1519100

2001, Jpn. J. Appl. Phys., 40, L921, 10.1143/JJAP.40.L921

2002, IEEE J. Sel. Top Quantum Electron., 8, 302, 10.1109/2944.999185

2000, Appl. Phys. Lett., 77, 175, 10.1063/1.126915

2003, Proc. SPIE, 4996, 188, 10.1117/12.479775

2003, Appl. Phys. Lett., 82, 1, 10.1063/1.1533851

2001, Appl. Phys. Lett., 78, 399, 10.1063/1.1338964

2001, Appl. Phys. Lett., 78, 3927, 10.1063/1.1377854

2001, Appl. Phys. Lett., 79, 711, 10.1063/1.1390485

2002, Appl. Phys. Lett., 81, 2508, 10.1063/1.1510967

2003, Appl. Phys. Lett., 82, 2565, 10.1063/1.1569040

2001, Phys. Status Solidi A, 188, 113, 10.1002/1521-396X(200111)188:1<113::AID-PSSA113>3.0.CO;2-C

2001, J. Appl. Phys., 90, 4191, 10.1063/1.1403665

1969, Appl. Phys. Lett., 15, 327, 10.1063/1.1652845

1998, Mater. Res. Soc. Symp. Proc., 482, 269

2001, Jpn. J. Appl. Phys., 40, L140, 10.1143/JJAP.40.L140

2001, Mater. Res. Soc. Symp. Proc., 680E, E2

1999, Jpn. J. Appl. Phys., 38, L217, 10.1143/JJAP.38.L217

1998, Mater. Sci. Forum, 264–268, 1121

1998, Mater. Res. Soc. Symp. Proc., 482, 251

2001, Phys. Status Solidi A, 188, 429, 10.1002/1521-396X(200111)188:1<429::AID-PSSA429>3.0.CO;2-9

2003, Solid-State Electron., 47, 1075, 10.1016/S0038-1101(02)00473-2

2003, Phys. Status Solidi A, 200, 2265

2001, Phys. Status Solidi A, 188, 429, 10.1002/1521-396X(200111)188:1<429::AID-PSSA429>3.0.CO;2-9

1998, Mater. Res. Soc. Symp. Proc., 482, 245

2003, Phys. Status Solidi A, 200, 106, 10.1002/pssa.200303411