3-D schapery representation for non-linear viscoelasticity and finite element implementation

Computational Mechanics - Tập 18 - Trang 182-191 - 1996
J. Lai1, A. Bakker1
1Faculty of Chemical Technology and Materials Science, Delft University of Technology, Delft, The Netherlands

Tóm tắt

On the basis of the one-dimensional Schapery representation for non-linear viscoelasticity, a three-dimensional constitutive model incorporating the effects of temperature and physical ageing is developed for isotropic non-linear viscoelastic materials. Adopting the assumption that the hydrostatic and deviatoric responses are uncoupled, the contitutive equation is expressed in incremental form for both compressible and incompressible materials, with the hereditary integral updated at the end of each time increment by recursive computation. The proposed model is implemented in the finite element package MARC. Numerical examples are given to demonstrate the effectiveness of the model and the numerical algorithms.

Tài liệu tham khảo

Buckley, C. P.; McCrum, N. G. 1974: The relation between linear and non-linear viscoelasticity of polypropylene. J. Mater. Sci. 9: 2064–2066 Flory, R. J. 1961: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57: 829–838 Henriksen, M. 1984: Non-linear viscoelastic stress analysis — a finite element approach, Computers and Structures 18: 133–139 Heidweiller, A. J. 1994: Proc. 10th Biennial European Conference on Fracture, Berlin, Germany, September 1994, 741–746 Lai, J. 1995: Non-linear deformation behaviour of high-density polyethylene, Ph.D. thesis, Delft University Press Lubliner, J. 1985: A model for rubber viscoelasticity, Mech. Res. Comm. 12, 233–245 MARK k5.2 1993: User's Manuals Mindel, M. J.; Brown, N. 1993: Creep and recovery of polycarbonate, J. Mater. Sci. 8: 863–870 Ogden, R. W. 1984: Non-linear elastic deformation, Chichester, UK., Ellis, Horwood Pao, Y. H.; Marin, J. 1953: J. Appl. Mech. 19: 478–484 Rooijackers, H. F. L. 1988: A numerical implementation of the Schapery model for nonlinear viscoelasticity, PhD thesis, Eindhoven University of Technology, The Netherlands Schapery, R. A. 1969: On the characterisation of non-linear viscoelastic materials. J. Polym. Eng. Sci. 9, 295–310 Simo, J. C.; Taylor, R. L.; Pister, K. S. 1985: Variational and projection methods for the volume constraint in finite deformation, Comput. Meths. Appl. Mech. Eng. 51, 177–208 Simo, J. C. 1987: On a fully three-dimensional finite strain viscoelastic damage model: formulation and computational aspects, Comput. Meths. Appl. Mech. Eng. 60: 153–173 Struik, L. C. E. 1978: Physical ageing in amorphous polymers and other materials, Amsterdam, Elsevier Williams, M. L.; Landel, R. F.; Ferry, J. D. 1955: J. Amer. Chem. Soc. 77: 3701–3707 Zhang, L.; Ernst, L. J. 1993: A three dimensional model for non-linear viscoelasticity. In: Dijksman, J. F.; Nieuwstradt, F. T. M. (ed): Topics in applied mechanics, pp. 253–260, Kluwer Academic Publisher Van der Zwet, M. J. M. 1992: Proc. 9th Biennial European Conference on Fracture, Varna, Bulgaria, September 1992, 196–201