24-epibrassinolide phục hồi chuyển hóa nitơ của đậu xanh dưới áp lực mặn

Ronaldo J. D. Dalio1,2, Hildete Prisco Pinheiro3, Ladaslav Sodek2, Claudia Regina Baptista Haddad2
1Department of Ecophysiology of Plants, Technical University of Munich, Freising, Germany
2Department of Plant Biology, Institute of Biology, State University of Campinas-UNICAMP, CP 6109 Campinas, Brazil
3Departament of Statistics, Institute of Mathematics, Statistics and Scientific Computation, University of Campinas-UNICAMP, Campinas, Brazil

Tóm tắt

Tóm tắt Đặt vấn đề Nhiều nghiên cứu đã chỉ ra rằng brassinosteroid làm giảm các tác động của stress muối. Tuy nhiên, chưa có thông tin nào về ảnh hưởng của chúng đến sự vận chuyển axit amin, cũng như ảnh hưởng của các hormone này đến sự tiếp nhận nitrate dưới điều kiện mặn. Nghiên cứu này nhằm xác định ảnh hưởng của 24-epibrassinolide, với nồng độ 10-7 M và 0.5 × 10-9 M, cùng clotrimazole (chất ức chế sự tổng hợp brassinosteroid), với nồng độ 10-4 M, đến việc tiếp nhận và chuyển hóa nitrate trong cây C. cajan (L.) Millsp, giống C11, khi trồng dưới điều kiện có muối. Các khía cạnh sau được phân tích: mức độ protein, axit amin, nitrate, nitrate reductase của rễ và thành phần của dịch mạch gỗ axit amin. Kết quả Độ mặn làm giảm tỷ lệ các axit amin vận chuyển N như ASN (thành phần chính), GLU, ASP và GLN. Tác dụng của hormone trong việc giảm tác hại của muối liên quan đến việc thiết lập lại (toàn bộ hoặc một phần) tỷ lệ GLU, ASN và GLN, được vận chuyển trong mạch gỗ và đến sự gia tăng nhỏ nhưng đáng kể trong việc tiếp nhận nitrate. Việc tăng cường tiếp nhận nitrate, được thúc đẩy bởi 24-epibrassinolide, có liên quan đến hoạt động cao hơn của nitrate reductase cùng với mức độ axit amin tự do và protein hòa tan trong rễ của cây trồng dưới điều kiện có muối.

Từ khóa

#brassinosteroid #24-epibrassinolide #nitrate #stress mặn #chuyển hóa nitơ

Tài liệu tham khảo

Akintayo ET, Oshodi AA, Esuoso KO: Effects of NaCl, ionic strength and pH on the foaming and gelation of pigeon pea ( Cajanus cajan ) protein concentrates. Food Chem 1999, 66: 51–56. 10.1016/S0308-8146(98)00155-1

Amarante L, Sodek L: Waterlogging effect on xylem sap glutamine of nodulated soybean. Biol Plant 2006, 50: 405–410. 10.1007/s10535-006-0057-6

Amarante L, Lima JD, Sodek L: Growth and stress conditions cause similar changes in xylem amino acids for different legume species. Environ Exp Bot 2006, 58: 123–129. 10.1016/j.envexpbot.2005.07.002

Amzallag GN, Vaisman J: Influence of brassinosteroids on initiation of the root gravitropic response in Pisum sativum seedlings. Biol Plant 2006, 50: 283–286. 10.1007/s10535-006-0021-5

Antunes F, Sodek L, Pineda M, Aguilar M: Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean ( Glycine max ). Physiol Plant 2008, 133: 736–743. 10.1111/j.1399-3054.2008.01092.x

Anuradha S, Rao SSS: Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice ( Oryza sativa L.). Plant Growth Regul 2001, 33: 151–153. 10.1023/A:1017590108484

Ashraf M: Salt tolerance of pigeon pea ( Cajanus-cajan (L.) Millsp) at 3 growth-stages. Ann Appl Biol 1994, 124: 153–164. 10.1111/j.1744-7348.1994.tb04123.x

Bieleski LR, Turner NA: Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal Biochem 1966, 17: 278–293. 10.1016/0003-2697(66)90206-5

Botrel A, Kaiser WM: Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 1997, 20: 491–501.

Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem 1976, 72: 248–254. 10.1016/0003-2697(76)90527-3

Carillo P, Mastrolonardo G, Nacca F, Fuggi A: Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 2005, 32: 209–219. 10.1071/FP04184

Cataldo DA, Haroon M, Schrader LE, Youngs VL: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 1975, 6: 71–80. 10.1080/00103627509366547

Corzo O, Fuentes A: Moisture sorption isotherms and modeling for pre-cooked flours of pigeon pea ( Cajanus cajans L. millsp ) and lima bean ( Canavalia ensiformis ). J Food Eng 2004, 65: 443–448. 10.1016/j.jfoodeng.2004.02.004

Cramer VA, Schmidt S, Stewart GR, Thorburn PJ: Can the nitrogenous composition of xylem sap be used to assess salinity stress in Casuarina glauca ? Tree Physiol 2002, 22: 1019–1026. 10.1093/treephys/22.14.1019

Dalio RJD, Pinheiro HP, Sodek L, Haddad CRB: The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus Cajan (L.) Millsp. to salinity. Acta Physiol Plant 2011, 33: 1887–1896. 10.1007/s11738-011-0732-x

Debouba M, Maaroufi-Dghimi H, Suzuki A, Ghorbel MH, Gouia H: Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann Bot 2007, 99: 1143–1151. 10.1093/aob/mcm050

FAO: Global network on integrated soil management for sustainable use of salt affected soils. 2008. Available at: . [Accessed Dec. 22 2008] http://www.fao.org/ag/AGL/agll/spush/intro.htm Available at: . [Accessed Dec. 22 2008]

Galvan-Ampudia CS, Testerink C: Salt stress signals shape the plant root. Curr Opin Plant Biol 2011, 14: 296–302. 10.1016/j.pbi.2011.03.019

Hageman RH, Reed AJ: Nitrate reductase from higher plants. Methods Enzymol 1980, 69: 270–280.

Hamdia ABE, Shaddad MAK, Doaa MM: Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 2004, 44: 165–174.

Hasaneen MNA, Younis ME, El-Bialy DMA: Plant growth, metabolism and adaptation in relation to stress conditions: Further studies supporting nullification of harmful effects of salinity in lettuce plants by urea treatment. Plant Soil Environ 2008, 54: 123–131.

Hayat S, Ali B, Hasan AS, Ahmad A: Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea . Environ Exp Bot 2007, 60: 33–41. 10.1016/j.envexpbot.2006.06.002

Hoagland DR, Arnon DI: The water-culture method for growing plants without soil. California Agric Exp Station 1938. Circular 347 Circular 347

Iqbal N, Ashraf MY, Javed F, Martinez V, Ahmad K: Nitrate reduction and nutrient accumulation in wheat grown in soil salinized with four different salts. J Plant Nutr 2006, 29: 409–421. 10.1080/01904160500524852

Jarret HW, Cooksy KD, Ellis B, Anderson JM: The separation of 0-phthalaldehyde derivatives of amino acids by reverse-phase chromatography on octysilica columms. Anal Biochem 1986, 153: 189–198. 10.1016/0003-2697(86)90079-5

Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P: Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassinca napus to a range of abiotic stresses. Planta 2007, 225: 353–364.

Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG: Asparagine in plants. Ann Appl Biol 2007, 150: 1–26. 10.1111/j.1744-7348.2006.00104.x

Lima JD, Sodek L: N-stress alters aspartate and asparagine levels of xylem sap in soybean. Plant Sci 2003, 165: 649–656. 10.1016/S0168-9452(03)00251-6

Maaroufi-Dguimi H, Debouba M, Gaufichon L, Clément G, Gouia H, Hajjaji A, Suzuki A: An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance. Plant Physiol Biochem 2011, 49: 623–628. 10.1016/j.plaphy.2011.03.010

Marsh NR, Adams MA: Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust J Bot 1995, 43: 39–50. 10.1071/BT9950039

Mc Clure PR, Israel DW: Transport of nitrogen in the xylem of soybean plants. Plant Physiol 1979, 64: 411–416. 10.1104/pp.64.3.411

Ozdemir F, Bor M, Demiral T, Türkan I: Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice ( Oryza sativa L.) under salinity stress. Plant Growth Regul 2004, 42: 203–211.

Parida AK, Das AB: Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J Plant Physiol 2004, 161: 921–928. 10.1016/j.jplph.2003.11.006

Puiatti M, Sodek L: Waterlogging affects nitrogen transport in the xylem of soybean. Plant Physiol Biochem 1999, 37: 767–773. 10.1016/S0981-9428(00)86690-5

Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L, Hong F: Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol Trace Elem Res 2011. 10.1007/s12011-011-9037-6

Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C: The Arabidopsis pop2–1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 2010, 10: 20. 10.1186/1471-2229-10-20

Rubinigg M, Posthumus F, Ferschke M, Theo J, Elzenga M, Stulen I: Effects of NaCl salinity on 15 N-nitrate fluxes and specific root length in the halophyte Plantago maritima L. Plant Soil 2003, 250: 201–213. 10.1023/A:1022849928781

Silveira JAG, Melo ARB, Viégas RA, Oliveira JTA: Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 2001, 46: 171–179. 10.1016/S0098-8472(01)00095-8

Silveira JAG, Viegas RD, Rocha IMA, Moreira ACDM, Moreira RD, Oliveira JTA: Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol 2003, 160: 115–123. 10.1078/0176-1617-00890

Sousa CAF, Sodek L: The metabolic response of plants to oxygen deficiency. Braz J Plant Physiol 2002, 14: 83–94.

Sousa CAF, Sodek L: Alanine metabolism and alanine aminotransferase activity in soybean ( Glycine max ) during hypoxia of the root system and subsequent return to normoxia. Environ Exp Bot 2003, 50: 1–8. 10.1016/S0098-8472(02)00108-9

Surabhi G-K, Reddy AM, Kumasi GJ, Sudhakar C: Modulations in key enzymes of nitrogen metabolism in two high yielding genotypes of mulberry ( Morus alba L.) with differential sensitivity to salt stress. Environ Exp Bot 2008, 64: 171–179. 10.1016/j.envexpbot.2008.04.006

Thomas AL, Guerreiro SMC, Sodek L: Aerenchyma formation and recovery from hypoxia of the flooded root of system of nodulated soybean. Ann Bot 2005, 96: 1191–1198. 10.1093/aob/mci272

Türkan I, Demiral T: Recent developments in understanding salinity tolerance. Environ Exp Bot 2009, 67: 2–9. 10.1016/j.envexpbot.2009.05.008

Yazici I, Türkan I, Sekmen AH, Demiral T: Salinity tolerance of purslane ( Portulaca oleraceae L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and praline accumulation. Environ Exp Bot 2007, 61: 49–57. 10.1016/j.envexpbot.2007.02.010

Yemm EW, Cocking EC: The determination of amino acids with ninhydrin. Analyst 1955, 80: 209–213. 10.1039/an9558000209

Younis ME, Hasaneen MN, Kazamel AMS: Plant growth, metabolism and adaptation to stress conditions. XXVII. Can ascorbic acid modify the adverse effects of NaCl and manitol on amino acids, nucleic acids and protein patterns in Vicia faba seedlings? Protoplasma 2009, 235: 37–47. 10.1007/s00709-008-0025-4

Zheng Y, Wang Z, Sun X, Jia A, Jiang G, Li Z: Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environ Exp Bot 2008, 62: 129–138. 10.1016/j.envexpbot.2007.07.011

Zullo MAT, Adam G: Brassinosteroid phytohormones-structure, bioactivity and applications. Braz J Plant Physiol 2002, 14: 143–181.