2-aryl benzimidazole conjugate induced apoptosis in human breast cancer MCF-7 cells through caspase independent pathway
Tóm tắt
Apoptosis is a representative form of programmed cell death, which has been assumed to be critical for cancer prevention. Thus, any agent that can induce apoptosis may be useful for cancer treatment and apoptosis induction is arguably the most potent defense against cancer promotion. In our previous studies, 2-aryl benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity and one of the new molecule (2f) was considered as a potential lead. This lead molecule showed significant antiproliferative activity against human breast cancer cell line, MCF-7. The results of the present study revealed that this compound arrested the cell cycle at G2/M phase. Topoisomerase II inhibition assay and Western blot analysis suggested that this compound effectively inhibits topoisomerase II activity which leads to apoptotic cell death. Apoptosis induction in MCF-7 cells was further confirmed by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome c from mitochondria, an increase in the level of apoptosis inducing factor (AIF), generation of reactive oxygen species (ROS), up regulation of proapoptotic protein Bax and down regulation of anti apoptotic protein Bcl-2. Apoptosis assay using Annexin V-FITC assay also suggested that this compound induced cell death by apoptosis. However, compound 2f induced apoptosis could not be reversed by Z-VAD-FMK (a pan-caspase inhibitor) demonstrated that the 2f induced apoptosis was caspase independent. Further, 2f treatment did not activate caspase-7 and caspase-9 activity, suggesting that this compound induced apoptosis in breast cancer cells via a caspase independent pathway. Most importantly, this compound was less toxic towards non-tumorigenic breast epithelial cells, MCF-10A. Furthermore, docking studies also support the potentiality of this molecule to bind to the DNA topoisomerase II.
Tài liệu tham khảo
Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J (2015) Breast cancer: epidemiology and etiology. Cell Biochem Biophys 72(2):333–338. doi:10.1007/s12013-014-0459-6
Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J (2016) Direct activation of Bax protein for cancer therapy. Med Res Rev 36(2):313–341. doi:10.1002/med.21379
Xin M, Li R, Xie M, Park D, Owonikoko TK, Sica GL, Corsino PE, Zhou J, Ding C, White MA, Magis AT, Ramalingam SS, Curran WJ, Khuri FR, Deng X (2014) Small-molecule Bax agonists for cancer therapy. Nat Commun 5:4935. doi:10.1038/ncomms5935
Liu Z, Wild C, Ding Y, Ye N, Chen H, Wold EA, Zhou J (2016) BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov Today 21(6):989–996. doi:10.1016/j.drudis.2015.11.008
Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G, Sica GL, Ding C, Zhou J, Magis AT, Chen ZG, Shin DM, Ramalingam SS, Khuri FR, Curran WJ, Deng X (2015) Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell 27(6):852–863. doi:10.1016/j.ccell.2015.04.010
Toshiya K, Testuya T, Akira H, Takuji T (2012) Cancer chemoprevention through the induction of apoptosis by natural compounds. J Biophys Chem 3:156–173. doi:10.4236/jbpc.2012.32018
Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, Lin JP, Tang NY, Chung JG, Chou MJ, Teng YH, Chen DR (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–1191. doi:10.1007/s12272-010-0808-y
Kemnitzer W, Kuemmerle J, Jiang S, Zhang HZ, Sirisoma N, Kasibhatla S, Crogan-Grundy C, Tseng B, Drewe J, Cai SX (2008) Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. Part 1: structure–activity relationships of the 1- and 3-positions. Bioorg Med Chem Lett 18(23):6259–6264. doi:10.1016/j.bmcl.2008.09.110
Kemnitzer W, Sirisoma N, Nguyen B, Jiang S, Kasibhatla S, Crogan-Grundy C, Tseng B, Drewe J, Cai SX (2009) Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure–activity relationships of the carboxamide group. Bioorg Med Chem Lett 19(11):3045–3049. doi:10.1016/j.bmcl.2009.04.009
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. 10.1016/S0092-8674(00)81683-9
Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9(5):327–337. doi:10.1038/nrc2608
Vos SM, Tretter EM, Schmidt BH, Berger JM (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12(12):827–841. doi:10.1038/nrm3228
Bailly C (2012) Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 112(7):3611–3640. doi:10.1021/cr200325f
Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 109(7):2894–2902. doi:10.1021/cr900097c
Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8(1):82–95. doi:10.1021/cb300648v
Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338–350. doi:10.1038/nrc2607
Nitiss JL (1998) Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim Biophys Acta 1400(1–3):63–81. doi:10.1016/S0167-4781(98)00128-6
Fortune JM, Osheroff N (2000) Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64:221–253. doi:10.1016/S0079-6603(00)64006-0
Wilstermann AM, Osheroff N (2003) Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr Top Med Chem 3(3):321–338. doi:10.2174/1568026033452519
Bromberg KD, Burgin AB, Osheroff N (2003) A two-drug model for etoposide action against human topoisomerase II alpha. J Biol Chem 278:7406–7412. doi:10.1074/jbc.M212056200
Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6):430–440. doi:10.1038/nrm831
Gao C, Li B, Zhang B, Sun Q, Li L, Li X, Chen C, Tan C, Liu H, Jiang Y (2015) Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorg Med Chem 23(8):1800–1807. doi:10.1016/j.bmc.2015.02.036
Singla P, Luxami V, Paul K (2015) Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg Med Chem 23(8):1691–1700. doi:10.1016/j.bmc.2015.03.012
Paul K, Sharma A, Luxami V (2014) Synthesis and in vitro antitumor evaluation of primary amine substituted quinazoline linked benzimidazole. Bioorg Med Chem Lett 24(2):624–629. doi:10.1016/j.bmcl.2013.12.005
Hu Z, Ou L, Li S et al (2014) Synthesis and biological evaluation of 1-cyano-2-amino-benzimidazole derivatives as a novel class of antitumor agents. Med Chem Res 23, 3029–3038. doi:10.1007/s00044-013-0888-6
Kamal A, Srinivasulu V, Sathish M, Tangella Y, Nayak VL, Narasimha Rao MP, Shankaraiah N, Nagesh N (2014) Palladium-catalyzed aryl C–H activation and tandem ortho-hydroxylation/alkoxylation of 2-aryl benzimidazoles: cytotoxicity and DNA-binding studies. Asian J Org Chem 3:68–76. doi:10.1002/ajoc.201300214
Szumilak M, Szulawska-Mroczek A, Koprowska K, Stasiak M, Lewgowd W, Stanczak A, Czyz M (2010) Synthesis and in vitro biological evaluation of new polyamine conjugates as potential anticancer drugs. Eur J Med Chem 45(12):5744–5751. doi:10.1016/j.ejmech.2010.09.032
Shankar R, Chakravarti B, Singh US, Ansari MI, Deshpande S, Dwivedi SK, Bid HK, Konwar R, Kharkwal G, Chandra V, Dwivedi A, Hajela K (2009) Synthesis and biological evaluation of 3,4,6-triaryl-2-pyranones as a potential new class of anti-breast cancer agents. Bioorg Med Chem 17(11):3847–3856. doi:10.1016/j.bmc.2009.04.032
Chakravarti B, Maurya R, Siddiqui JA, Bid HK, Rajendran SM, Yadav PP, Konwar R (2012) In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid. J Ethnopharmacol 142:72–79. doi:10.1016/j.jep.2012.04.015
Ding G, Liu F, Yang T, Jiang Y, Fu H, Zhao Y (2006) A novel kind of nitrogen heterocycle compound induces apoptosis of human chronic myelogenous leukemia K562 cells. Bioorg Med Chem 14(11):3766–3774. doi:10.1016/j.bmc.2006.01.050
Keerthy HK, Garg M, Mohan CD, Madan V, Kanojia D, Shobith R, Nanjundaswamy S, Mason DJ, Bender A, Basappa, Rangappa KS, Koeffler HP (2014) Synthesis and characterization of novel 2-amino-chromene-nitriles that target Bcl-2 in acute myeloid leukemia cell lines. PLoS One 9:e107118. doi:10.1371/journal.pone.0107118
Hayano T, Garg M, Yin D, Sudo M, Kawamata N, Shi S, Chien W, Ding LW, Leong G, Mori S, Xie D, Tan P, Phillip KH (2013) SOX7 is down-regulated in lung cancer. J Exp Clin Cancer Res 32:17. doi:10.1186/1756-9966-32-17
Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, Debatin KM (1998) Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem 273:33942–33948. doi:10.1074/jbc.273.51.33942
Sánchez-Alcázar JA, Schneider E, Martínez MA, Carmona P, Hernández-Muñoz I, Siles E, De La Torre P, Ruiz-Cabello J, García I, Solis-Herruzo JA (2000) Tumor necrosis factor-alpha increases the steady-state reduction of cytochrome b of the mitochondrialrespiratory chain in metabolically inhibited L929 cells. J Biol Chem 275:13353–13361. doi:10.1074/jbc.275.18.13353
Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49. doi:10.1093/emboj/17.1.37
Shafi G, Munshi A, Hasan Tarique N, Alshatwi Ali A, Jyothy A, Lei David KY (2009) Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa. Cancer Cell Int 9:1–8. doi:10.1186/1475-2867-9-29
Botta M, Armaroli S, Castagnolo D, Fontana G, Pera P, Bombardelli E (2007) Synthesis and biological evaluation of new taxoids derived from 2-deacetoxytaxinine J. Bioorg Med Chem Lett 17(6):1579–1583. doi:10.1016/j.bmcl.2006.12.101
Kulkarni P, Patnaik Rao KSK, Ramakrishna S (2015) Piperlonguimine indeces cell death via ros generation, atp depletion, glutathione depletion and dissipation of mitochondrial membrane potiential in Human breast cancer cell line. Int J Pharm Bio Sci 6(2):293–302
Wei H, Ruthenburg AJ, Bechis SK, Verdine GL (2005) Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J Biol Chem 280(44):37041–37047. doi:10.1074/jbc.M506520200
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256
Delano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos
Chan KT, Meng FY, Li Q, Ho CY, Lam TS, To Y, Lee WH, Li M, Chu KH, Toh M (2010) Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett 294(1):118–124. doi:10.1016/j.canlet.2010.01.029
Shen JK, Du HP, Yang M, Wang YG, Jin J (2009) Casticin induces leukemic cell death through apoptosis and mitotic catastrophe. Ann Hematol 88(8):743–752.doi:10.1007/s00277-008-0677-3
Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FH (1991) Proliferation and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ 2:209–214
Wells NJ, Hickson ID (1995) Human topoisomerase II alpha is phosphorylated in a cell cycle phase-dependent manner by a proline-directed kinase. Eur J Biochem 231:491–497. doi:10.1111/j.1432-1033.1995.0491e.x
Isaacs RJ, Davies SL, Sandri MI, Redwood C, Wells NJ, Hickson ID (1998) Physiological regulation of eukaryotic topoisomerase II. Biochim Biophys Acta 1(98):00131–00136. doi:10.1016/S0167478
Bromberg KD, Burgin AB, Osheroff N (2003) A two-drug model for etoposide action against human topoisomerase IIalpha. J Biol Chem 278:7406–7412. doi:10.1074/jbc.M212056200
Nitiss JL, Beck WT (1996) Antitopoisomerase drug action and resistance. Eur J Cancer 32A(6):958–966. doi:10.1016/0959-8049(96)00056-1
Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421–433. doi:10.1016/j.chembiol.2010.04.012
Gonda K, Tsuchiya H, Sakabe T, Akechi Y, Ikeda R, Nishio R, Terabayashi K, Ishii K, Matsumi Y, Ashla AA, Okamoto H, Takubo K, Matsuoka S, Watanabe Y, Hoshikawa Y, Kurimasa A, Shiota G (2008) Synthetic retinoid CD437 induces mitochondriamediated apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 370:629–633. doi:10.1016/j.bbrc.2008.04.008
Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197(1):40–45. doi:10.1006/bbrc.1993.2438
Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ∆Ψ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82. doi:10.1016/S0014-5793(97)00669-8
Sánchez Y, Simón GP, Calviño E, de Blas E, Aller P (2010) Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines. J Pharmacol Exp Ther 335(1):114–123. doi:10.1124/jpet.110.168344
Liu K, Zhang D, Chojnacki J, Du Y, Fu H, Grant S, Zhang S (2013) Design and biological characterization of hybrid compounds of curcumin and thalidomide for multiple myeloma. Org Biomol Chem 11:4757–4763. doi:10.1039/C3OB40595H
Konstantinov SM, Berger MR (1999) Human urinary bladder carcinoma cell lines respond to treatment with alkylphosphocholines. Cancer Lett 144(2):153–160. doi:10.1016/S0304-3835(99)00219-0
Bunz F (2001) Cell death and cancer therapy. Curr Opin Pharmacol 1(4):337–341. doi:10.1016/S1471-4892(01)00059-5
Tor YS, Yazan LS, Foo JB, Wibowo A, Ismail N, Cheah YK, Abdullah R, Ismail M, Ismail IS, Yeap SK (2015) Induction of apoptosis in MCF-7 cells via oxidative stress generation, mitochondria-dependent and caspase independent pathway by ethyl acetate extract of Dillenia suffruticosa and its chemical profile. PLoS One 10:e0127441. doi:10.1371/journal.pone.0127441
Hu CC, Tang CH, Wang JJ (2001) Caspase activation in response to cytotoxic rana catesbeiana ribonuclease in MCF-7 cells. FEBS Lett 503:65–68. doi:10.1016/S0014-5793(01)02691-6
Xuejun J, Xiaodong W (2004) Cytochrome c-mediated apoptosis. Ann Rev Biochem 73:87–106. doi:10.1146/annurev.biochem.73.011303.073706
Costantini P, Bruey JM, Castedo M, Métivier D, Loeffler M, Susin SA, Ravagnan L, Zamzami N, Garrido C, Kroemer G (2002) Pre-processed caspase-9 contained in mitochondria participates in apoptosis. Cell Death Differ 9:82–88. doi:10.1038/sj/cdd/4400932
Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24(7):1375–1386. doi:10.1038/sj.emboj.7600614
Qiao L, Wong BC (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 12(3):55–64. doi:10.1016/j.drup.2009.02.002
Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabó I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267(5):2934–2939
Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519. doi:10.1038/74994
Parreño M, Casanova I, Céspedes MV, Vaqué JP, Pavón MA, Leon J, Mangues R (2008) Bobel-24 and derivatives induce caspase-independent death in pancreatic cancer regardless of apoptotic resistance. Cancer Res 68(15):6313–6323. doi:10.1158/0008-5472.CAN-08-1054
Shrivastava A, Tiwari M, Sinha RA, Kumar A, Balapure AK, Bajpai VK, Sharma R, Mitra K, Tandon A, Godbole MM (2006) Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving the mitochondria-mediated pathway. J Biol Chem 281(28):19762–19771. doi:10.1074/jbc.M60074